7–10 Apr 2019
Imperial College London
Europe/London timezone

Combined Search for an Invisibly Decaying Higgs Boson in Hadronic Channels at √s = 13 TeV with CMS

10 Apr 2019, 11:45
15m
Huxley 311 (Imperial College London)

Huxley 311

Imperial College London

Speaker

Eshwen Bhal (University of Bristol (GB))

Description

The leading upper limit on the Higgs boson to invisible state branching ratio (BR) is 24%, while the Standard Model prediction sits far below at 0.1%. The observed value was measured using pp collision data collected by the CMS experiment between 2011 and 2015. Our analysis targets a better limit by using 13 TeV data from 2016-2018 -- an integrated luminosity of over 130 fb-1 -- in addition to performing the combination over all Higgs production modes from the outset rather than in a posthoc fashion. The hadronic channels we include are gluon-gluon fusion, ttH, vector boson fusion (VBF) and Higgs production in association with a vector boson (VH). Analysing each production mode in an orthogonal search region gives a high degree of sensitivity compared to previous attempts. In this talk, the finalised event selection, signal categorisation, data-driven background estimation and systematic uncertainties for the non-VBF modes will be presented. A sufficiently accurate limit on the BR that is still above the Standard Model prediction may be interpreted in a beyond-Standard Model context. Constraints can be placed on theories that posit exotic particles or dark matter that couple to the Higgs, enhancing the invisible state BR.

Presentation materials