Speaker
Mr
Samuel Gozel
(Institut de Physique, Ecole polytechnique fédérale de Lausanne)
Description
Using the Matrix Product State framework, we generalize the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction to one-dimensional spin liquids with global color ${\rm SU}(N)$ symmetry, finite correlation lengths, and edge states that can belong to any self-conjugate irreducible representation of ${\rm SU}(N)$. Families of local parent Hamiltonians can be constructed and allow us to study the stability of the edge states by interpolating between exact AKLT points. In particular we show that the topologically trivial phase of a spin-$1$ chain with spin-$1$ edge states can be reached from the original AKLT point through a continuous phase transition described by the $\rm{SU}(2)_1$ WZW conformal field theory.
Authors
Mr
Samuel Gozel
(Institut de Physique, Ecole polytechnique fédérale de Lausanne)
Prof.
Didier Poilblanc
(Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse)
Prof.
Ian Affleck
(The University of British Columbia)
Prof.
Frédéric Mila
(Institut de Physique, Ecole polytechnique fédérale de Lausanne)