Speaker
Description
We present our recent results on the local magnetic and electronic properties at the topological insulator/ferromagnetic insulator interface EuS/Bi$_2$Se$_3$, which was previously reported to exhibit magnetic proximity persisting up to room temperature [1]. We use antiresonant ARPES at the Eu $M_5$ pre-edge to access the interface electronic band structure. Low energy muon spin rotation reveals strong local magnetic fields extending several nm into Bi$_2$Se$_3$, below the magnetic transition of EuS. However, we find a very similar result upon replacing Bi$_2$Se$_3$ with titanium, implying that its origin is mostly independent of the topology of the involved layers [2].
[1] F. Katmis, et al., Nature 533, 513 (2016).
[2] J. A. Krieger, et al., Phys. Rev. B 99, 064423 (2019)