Speaker
Description
Weyl fermions can arise in Weyl semimetals (WSMs) in which the energy bands are usually nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetic WSMs is scarce. Here, using photoemission spectroscopy, we observe the degeneracy of Bloch bands already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi-long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Ef. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not an essential requirement for WSM states in centrosymmetric systems, and that WSM states can emerge in a wider range of condensed-matter systems than previously thought.