Speaker
Description
For decades miniaturization has been the driving force behind semiconductor technology and the enabler of today's information technology. The development of smaller devices resulting in faster chips and consequently cheaper microprocessors drove this first-of-a-kind revolution in IT.
Today, the fundamental question raised is: what is next? What will the next revolution be?
With the explosion of available data, the internet-of-things and the increasing demand for machine learning, deep learning and artificial intelligence, the computational workloads are significantly changing. Therefore, there is a growing need for specialized hardware that can handle large computational workloads that take too long to run on conventional machines. In that regard completely new computing paradigms are being developed, such as quantum computing and non-von Neumann computing.
I will give an overview of our research activities in the field of these new paradigms of cognitive hardware technologies and quantum computing.