Speaker
Description
Polaritons are half-light half matter quasiparticles resulting from the strong coupling of photons confined in a microcavity with excitons confined in a semiconductor quantum well. Polariton condensates may be created both spontaneously through a “standard” phase transition towards a Bose-Einstein condensate, or be resonantly driven with a well-defined initial phase, speed and spatial distribution.
Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed very directly, with in particular the possibility of detailed interferometric studies. This allows for example to probe the long-range coherence properties of a quantum fluid with unprecedented ease. This also allows testing superfluid properties with great precision in space and time.
In this talk, I will review the main achievements in the field of polariton physics, and try to give some perspective for future research tracks. I will show that polaritons are benefiting, through their photonic component, from a very small mass, and at the same time, through their matter component, they are able to interact. The consequences of this double nature are manyfold.