Speaker
Description
We have developed a framework for performing unsupervised new physics searches using jet substructure in di-jet events, where the likelihood functions are inferred in a data-driven manner. This framework is based on a machine learning algorithm called Latent Dirichlet Allocation, a statistical model initially used for describing the topical structure of documents. In this talk I will present an overview of and results from this recent work. The results will include: a proof-of-principle analysis on boosted final states from top-quark pair-production, a new physics search for a 3TeV W' boson decaying to boosted jets, and results from the LHC Olympics challenge.