Speaker
Description
Present silicon sensor technology allows to efficiently operate sensors up to 10$^{16}$ n$_{eq}$/cm$^2$. However, several future applications, such as tracking detectors in high-luminosity and high-energy particle physics experiments, monitors for particle therapy and nuclear fusion reactors, envisage the use of silicon sensors in environments with fluences exceeding 10$^{17}$ n$_{eq}$/cm$^2$.
To overcome the present limit, we propose a design of silicon sensors which extends the range of operation by more than one order of magnitude, up to fluences of 5$\cdot$10$^{17}$ n$_{eq}$/cm$^2$. The idea behind this radiation tolerance exploits the saturation of radiation damage effects, observed above 5$\cdot$10$^{15}$ n$_{eq}$/cm$^2$, in combination with two developments in sensor technology: (i) the use of thin sensors (20-30 $\mu$m), intrinsically less affected by radiation than thicker sensors, and (ii) the presence of internal signal multiplication (gain of 5-10), to compensate for the low signals generated in thin active volumes.