19–23 Oct 2020
Europe/Zurich timezone

Domain Adaptation Techniques in Particle Identification for the ALICE experiment

21 Oct 2020, 11:15
5m
Lightning talk 2 ML for analysis : Application of Machine Learning to analysis, event classification and fundamental parameters inference Workshop

Speaker

Michal Kurzynka (Warsaw University of Technology (PL))

Description

Classifying particle types on the basis of detectors response is a fundamental task in the ALICE experiment. Methods currently employed in this job are based on linear classifiers which are built on Monte Carlo simulation data, due to lack of labels (pdg code) in case of production data and require manual fine tuning to match latter data set distribution. This calibration is performed by highly experienced high energy physicists, often conducted as an iterative process which is time consuming. In this work, we present a proof-of-concept solution for Particle Identification (PID). The main component of this solution is a Classifier with Domain Adaptation model based on Domain Adversarial Neural Networks (DANN). Proposed model utilizes both Monte Carlo-generated and production data during training process despite the lack of labels in case of the latter data set. Such approach allows model to find such complex attributes in the common latent space, which mitigate domain shift between two data sources. Therefore, when training the model to perform classification of particles using simulation data, we do it on the basis of attributes which are valid also in real experimental data.
The main advantage of proposed model is improved classification quality on the production data, despite lack of manual calibration.

Authors

Michal Kurzynka (Warsaw University of Technology (PL)) Kamil Rafal Deja (Warsaw University of Technology (PL)) Georgy Kornakov (TU Darmstadt) Tomasz Piotr Trzcinski (Warsaw University of Technology (PL))

Presentation materials