Speaker
Description
In heavy-ion collisions, the observed non-zero second-order azimuthal anisotropy coefficient, $v_{2}$, for particles with high transverse momenta $\it{p}_{\rm T}$ is driven by the path-length dependent energy loss of hard partons travelling in the QGP, known as the jet quenching effect. Recent measurements show also a non-zero $v_{2}$ values for high $\it{p}_{\rm T}$ charged particles at high multiplicities in small collision systems (pp and p--Pb). Various mechanisms, such as parton energy loss in the cold nuclear matter, hydrodynamic evolution in the final state and initial state gluon correlations, are proposed to describe the observations whose origin is still debated.
In this contribution, the $v_{2}$ of particles within jets at mid-rapidity ($-0.8 < \eta < 0.8$) in the $10\%$ most central p--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$~TeV, measured with the ALICE detector, is presented. The $v_{2}$ signal of jet particles is extracted with 2-particle correlation method using a template fit and subsequently long-range correlations with particles at forward rapidities. The non-flow contribution is suppressed by subtracting the low-multiplicity from high-multiplicity collisions. The measurements will provide new insight into the understanding of the origin of long-range correlations observed in small systems.