Speaker
Description
A new model denoted ICCING (Initial Conserved Charges in Nuclear Geometry) reconstructs the initial conditions of BSQ conserved charges in the QGP by sampling the ($g \rightarrow q\bar{q}$) splitting function over the initial energy density. I will discuss the new open source C++ version of ICCING, coupled to TRENTO. We find that even at top LHC energies that the initial conditions due to local fluctuations probe a large range of baryon chemical potentials, $\mu_B \sim \pm 400MeV$, even though the global net baryon density is approximately zero. The new information provided by these conserved charges opens the door to a wealth of new charge- and flavor-dependent correlations in the initial state which we explore through a system size scan.