24–26 May 2021
University of Pittsburgh
US/Eastern timezone

$SU(5) \times U(1)_X$ Axion Model with Observable Proton Decay

24 May 2021, 15:00
15m
Axions & ALPs Axions & ALPs I

Speaker

Digesh Raut (University of Delaware)

Description

We propose a $SU(5) \times U(1)_X \times U(1)_{PQ}$ model, where $U(1)_X$ is the generalization of the $B-L$ (baryon minus lepton number) gauge symmetry and $U(1)_{PQ}$ is the global Peccei-Quinn (PQ) symmetry. There are four fermions families in $\bf{{\overline 5}} + \bf{10}$ representations of $SU(5)$, a mirror family in $\bf{5}+\bf{{\overline {10}}}$ representations, and three $SU(5)$ singlet Majorana fermions. The $U(1)_X$ related anomalies all cancel in the presence of the Majorana neutrinos. The $SU(5)$ symmetry is broken at $M_{GUT} \simeq (4-7)\times 10^{15}$ GeV and the proton lifetime $\tau_p$ is estimated to be well within the expected sensitivity of the future Hyper-Kamiokande experiment, $\tau_p \lesssim 1.3 \times 10^{35}$ years. The $SU(5)$ breaking also triggers the breaking of the PQ symmetry, resulting in axion dark matter (DM), with the axion decay constant $f_a$ of order $M_{GUT}$ or somewhat larger. The CASPEr experiment can search for such axion DM candidates. With the identification of the $U(1)_X$ breaking Higgs field with the inflaton field, we implement low scale inflection-point inflation with $H_{inf} < 10^9 $ GeV which successfully resolve the cosmologically fatal axion domain wall, axion DM isocurvature and $SU(5)$ monopole problems. The vectorlike fermions in the model are essential for achieving a successful unification of the SM gauge couplings as well as the phenomenological viability of both axion DM and inflation scenario.

Primary authors

Digesh Raut (University of Delaware) Prof. Qaisar Shafi (University of Delaware) Nobuchika Okada (University of Alabama)

Presentation materials