Speaker
Description
Zinc-65 (Zn-65) is a radionuclide of interest in the fields of medicine and gamma-ray spectroscopy, within which its continued use as a tracer and common calibration source necessitates increasingly-precise nuclear decay data. A Zn-65 dataset was obtained as part of the KDK ("potassium decay") experiment, whose apparatus consists of an inner X-ray detector and an efficient outer detector, the Modular Total Absorption Spectrometer (MTAS), to tag gamma rays. This setup allows for the discrimination of the electron capture decays of Zn-65 to the ground (EC) and excited (EC) states of Copper-65 (Cu-65) using an emerging technique for such a measurement, exploiting the high efficiency ($\sim$98%) of MTAS. Techniques used to obtain the ratio $\rho$ of EC to EC decays are applicable to the main KDK analysis which is making the first measurement of $\rho$ for Potassium-40, a common background in rare-event searches such as those for dark matter. The KDK instrumentation paper (under review by NIM) pre-print is available at arXiv:2012.15232. We present our current methodology and analysis procedures developed to obtain a novel measurement of the electron-capture decays of Zinc-65.