6–11 Jun 2021
Underline Conference System
America/Toronto timezone
Welcome to the 2021 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2021!

(G*) Bubble Nucleation Events are Correlated

7 Jun 2021, 16:57
3m
Underline Conference System

Underline Conference System

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Theoretical Physics / Physique théorique (DTP-DPT) M4-4 Cosmology (DTP) / Cosmologie (DPT)

Speaker

Dalila Pirvu (Perimeter Institute / University of Waterloo)

Description

False vacuum decay in quantum mechanical first order phase transitions is a phenomenon with wide implications in cosmology, and presents interesting theoretical challenges. In the standard approach, it is assumed that false vacuum decay proceeds through the formation of bubbles that nucleate at random positions in spacetime and subsequently expand. In this paper we investigate the presence of correlations between bubble nucleation sites using a recently proposed semi-classical stochastic description of vacuum decay. This procedure samples vacuum fluctuations, which are then evolved using lattice simulations. We compute the two-point function for bubble nucleation sites from an ensemble of simulations, demonstrating that nucleation sites cluster in a way that is qualitatively similar to peaks in random Gaussian fields. We comment on the implications for first order phase transitions during and after an inflationary era.

Primary author

Dalila Pirvu (Perimeter Institute / University of Waterloo)

Co-authors

Matthew Johnson (York University/Perimeter Institute) Jonathan Braden (University of Toronto)

Presentation materials

There are no materials yet.