Conveners
M1-1 Degenerate Quantum Gases and cold Atoms and Molecules (DAMOPC) / Gaz quantiques dégénérés et atomes et molécules froids (DPAMPC)
- Duncan O'Dell (McMaster University)
Cooling atomic gases to ultracold temperatures revolutionized the field of atomic physics, connecting with and impacting many other areas in physics. Recent advances in producing ultracold molecules suggest similarly dramatic discoveries are on the horizon. I will review the physics of ultracold molecules, including our work bringing a new class of molecules to ultracold temperatures....
Over the past decade, significant progress has been made in the commercialization of quantum sensors based on ultra-cold atoms and matter-wave interferometry. Nowadays, the first absolute quantum gravimeters have reached the market and there is even a cold-atom machine on the International Space Station. Matter-wave interferometers utilize the wave nature of atoms and their interaction with...
One of the most famous tidbits of received wisdom about quantum mechanics is that “you can’t ask” which path a photon took in an interferometer once it reaches the screen, or in general, that only questions about the specific things you finally measure are well-posed at all. Much work over the past decades has aimed to chip away at this blanket renunciation, and investigate “quantum...
We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a...
Hollow-core optical fibres provide μm-scale confinement of photons and atoms and reduce the power requirements for optical nonlinearities. This platform has opened tantalizing possibilities to study and engineer light-matter interactions in atomic ensembles. However, the purity, efficiency and nature of these interactions are contingent on the number, geometry and movement of atoms within the...
We model an atomic Bose-Einstein condensate (BEC) near an instability, looking for universal features. Instabilities are often associated with bifurcations where the classical field theory provided here by the Gross-Pitaevskii equation predicts that two or more solutions appear or disappear. Simple examples of such a situation can be realized in a BEC in a double well potential or in a BEC...
Lieb-Robinson and related bounds set an upper limit on the speed at which information propagates in non-relativistic quantum systems. Experimentally, light-cone-like spreading has been observed for correlations in the Bose-Hubbard model (BHM) after a quantum quench. Using a two-particle irreducible (2PI) strong-coupling approach to out-of-equilibrium dynamics in the BHM we calculate both the...
In recent years, multi-species trapped-ion systems have been investigated for the benefits they provide in quantum information processing experiments, such as sympathetic cooling and combining long coherence time of one species with ease of optical manipulation of the other. However, a large mass-imbalance between the ions result in decoupling of their motion in the collective vibrational...