Speaker
Description
Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for nuclear recoil interactions and have low-mass sensitivities down to ~1 GeV. A path to detect DM with masses below 1 GeV is the use of accelerators producing boosted low-mass DM. The Coherent CAPTAIN Mills (CCM) experiment uses a 10-ton liquid argon scintillation detector at the Lujan Center at LANSCE to search for physics beyond the standard model. The Lujan Center delivers a 100-kW, 800 MeV, 290 ns wide proton pulse onto a tungsten target at 20 Hz to generate a stopped pion source. The fast pulse, in combination with the speed of the CCM scintillation detector, is crucial for isolating prompt speed of light particles generated by the stopped pion source and reducing neutron and steady state background. In this talk I will discuss CCM’s search for Vector Portal Dark Matter by showing the results from our Fall 2019 run, as well as the projected reach of the experiment based on the current upgrades to the CCM detector.
Are you are a member of the APS Division of Particles and Fields? | No |
---|