Speaker
Description
Absorption of dark matter (DM) allows direct detection experiments to probe a broad range of DM candidates with masses much smaller than kinematically allowed via scattering. It has been known for some time that for vector and pseudoscalar DM the absorption rate can be related to the target's optical properties, i.e. the conductivity/dielectric. However this is not the case for scalar DM, where the absorption rate is determined by a, formally, NLO operator which does not appear in the photon absorption process. Therefore the absorption rate must be determined by other methods. We use a combination of first principles numeric calculations and semi-analytic modeling to compute the absorption rate in silicon, germanium and a superconducting aluminum target. We also find good agreement between these approaches and the data-driven approach for the vector and pseudoscalar DM models.
Are you are a member of the APS Division of Particles and Fields? | Yes |
---|