Speaker
Description
In this work, we derive lower mass bounds on the $Z^\prime$ gauge boson based on the dilepton data from LHC with 13 TeV of center-of-mass energy, and forecast the sensitivity of the High-Luminosity-LHC with $L=3000 fb^{-1}$, the High-Energy LHC with $\sqrt{s}=27$~TeV, and also at the Future Circular Collider with $\sqrt{s}=100$~TeV. We take into account the presence of exotic and invisible decays of the $Z^\prime$ gauge boson to find a more conservative and robust limit, different from previous studies. We investigate the impact of these new decays channels for several benchmark models in the scope of two different 3-3-1 models. We found that in the most constraining cases, LHC with $139fb^{-1}$ can impose $m_{Z^{\prime}}>4$~TeV. Moreover, we forecast HL-LHC, HE-LHC, and FCC bounds that yield $m_{Z^{\prime}}>5.8$~ TeV, $m_{Z^{\prime}}>9.9$~TeV, and $m_{Z^{\prime}}> 27$~TeV, respectively. Lastly, put our findings into perspective with dark matter searches to show the region of parameter space where a dark matter candidate with the right relic density is possible.