5–11 Jun 2022
McMaster University
America/Toronto timezone
Welcome to the 2022 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2022!

(I) Proton Driven Plasma Wakefield Acceleration Experiment at CERN

7 Jun 2022, 15:40
25m
MDCL 1105 (McMaster University)

MDCL 1105

McMaster University

Speaker

Victor Verzilov (TRIUMF (CA))

Description

Acceleration of particle beams by induced wakefield in plasmas is a possible solution on a path to push the energy frontier of experimental high energy physics by constructing compact machines with acceleration rates in excess of GV/m. The Advanced Wakefield Experiment (AWAKE), a plasma wakefield acceleration experiment, driven by the 400 GeV proton beam from the CERN SPS synchrotron is unique among plasma wakefield acceleration projects in its selection of protons as the driving particles. The efficiency and reach of energy transfer from 400 GeV protons to electrons confer a clear advantage over electron or laser driven alternatives. The AWAKE collaboration, including a team from Canada, was formed in 2013 as a proof-of-principle experiment and has already produced a wealth of results. The Run 1 of the experiment yielded the discovery of Self-Modulation of the SPS proton bunch in plasmas and acceleration of externally injected electrons to the GeV energy level. Starting in 2021 the experiment has proceeded with a decade-long Run 2 program. The goals for the Run 2 are the stable acceleration of a quality electron beam with high gradients over long distances and proof of scalability of the design principles to very high beam energies. This will allow the AWAKE collaboration to contemplate first applications of the experimental scheme to high-energy physics.

Primary author

Victor Verzilov (TRIUMF (CA))

Presentation materials