5–11 Jun 2022
McMaster University
America/Toronto timezone
Welcome to the 2022 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2022!

(I) Electron-Ion Collider Accelerator Development

7 Jun 2022, 10:45
30m
MDCL 1305 (McMaster University)

MDCL 1305

McMaster University

Invited Speaker / Conférencier(ère) invité(e) Symposia Day (DNP) - Physics at the Electron-Ion Collider (EIC) T2-6 Physics at the EIC Symposium: Accelerator Developments at the EIC (DNP) | Symposium sur la physique à l'EIC: avancées d'accélérateurs à l'EIC (DPN)

Speaker

Andrei Seryi (Jefferson Lab)

Description

The Electron-Ion Collider will be a new discovery machine for unlocking the secrets of the "glue" that binds the building blocks of visible matter in the universe. The EIC will consist of two intersecting accelerators, one producing an intense beam of electrons (Electron Storage Ring), the other a high-energy beam of protons or heavier atomic nuclei (Hadron Storage Ring), which are steered into collisions of spin-polarized beams in the Interaction Region. The EIC design will make use of existing ion sources, a pre-accelerator chain, a superconducting magnet ion storage ring, and other infrastructure of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The Rapid Cycling Synchrotron will provide injection into ESR, while preserving beam polarization. The Strong Hadron Cooling system will preserve emittances of the proton beam during collision run. The EIC project has recently received Critical Decision 1 (CD-1) approval from DOE, and the project team is now working on the next milestone – CD-2. The EIC project will be delivered in a collaboration of domestic and international partners. In this talk, the status of EIC accelerator will be reviewed.

Primary author

Andrei Seryi (Jefferson Lab)

Presentation materials