5–11 Jun 2022
McMaster University
America/Toronto timezone
Welcome to the 2022 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2022!

Caustics, Chaos, and Branched flow in a Kicked Bose-Einstein Condensate

6 Jun 2022, 14:00
15m
MDCL 1309 (McMaster University)

MDCL 1309

McMaster University

Oral not-in-competition (Graduate Student) / Orale non-compétitive (Étudiant(e) du 2e ou 3e cycle) Atomic, Molecular and Optical Physics, Canada / Physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) M2-5 Degenerate Quantum Gases and Cold Atoms and Molecules (DAMOPC/DCMMP) | Gaz quantiques dégénérés, molécules et atomes froids (DPAMPC/DPMCM)

Speaker

Joshua Hainge

Description

We numerically study the quantum dynamics of a bosonic Josephson junction (a Bose-Einstein condensate in a double-well potential) in the context of periodic driving of the tunnel coupling. In particular we examine how caustics, which can dominate the Fock space wavefunction following a sudden quench of the undriven system, are affected as the kicking strength is increased. In the limit of weak tunnelling and low number imbalance, the system maps onto the kicked rotor (an archetype of chaotic dynamics). By varying the strength of the kick quasi-randomly, we are able to realize a regime of "branched flow", a paradigm of wave behaviour in random media relevant to electron flow in conducting materials, radiowave propagation through the interstellar medium, and tsunamis in the ocean.

Primary author

Joshua Hainge

Co-author

Duncan O'Dell

Presentation materials

There are no materials yet.