Conveners
M1-2 Gravity and Cosmology I (DTP) | Gravité et cosmologie I (DPT)
- Sanjeev Seahra
Magnetic fields, if present in the primordial plasma prior to last scattering, would induce baryon inhomogeneities and speed up the recombination process. As a consequence, the sound horizon at last scattering would be smaller, which would help relieve the Hubble tension. Intriguingly, the strength of the magnetic field required to alleviate the Hubble tension happens to be of the right order...
The Canada-France-Hawaii Telescope (CFHT) Large Area U-band Deep Survey (CLAUDS) produces images to a median depth of $U=27.1$ AB. These U-band images are the deepest ever assembled over such a large area. The catalogue resulting from this survey contains a little more than 10,000,000 objects. Our goal is to identify white dwarfs from the CLAUDS deep fields and to study their physical...
The accelerating expansion of the universe has been widely studied beyond the standard $\mathrm{\Lambda}$-cold dark matter model ($\mathrm{\Lambda CDM}$) through modified gravity and dynamical dark energy models. Such modifications of laws of gravity at large scales usually require a new degree of freedom beyond the $\mathrm{\Lambda CDM}$ cosmology. In this work, we utilize the scalar-tensor...
Alternative gravity theories have been extensively explored beyond general relativity to study the modified growth of the cosmological perturbations, in which the scalar-tensor theory, with a single scalar field coupled to all of the matter is the most conventional one. MGCAMB, as the public code used to study modifications to the growth structure, has been used to study cosmological...