Conveners
M3-1 Advances in Nuclear and Particle Theory (DTP/DNP/PPD) | Progrès en théorie des particules et des noyaux (DPT/DPN/PPD)
- Michael Gericke (University of Manitoba)
- Matthias Danninger (Simon Fraser University (CA))
- Marco Merkli (Memorial University)
The existence of S-wave neutron superfluidity in the inner crust of neutron stars is well established and it affects the thermal properties and the cooling of the stars. In this talk, I will present a detailed ab initio study of the S-wave pairing gap and the equation of state of superfluid neutron matter. These calculations were carried out using the auxiliary field diffusion Monte Carlo...
The incompleteness of the Standard Model demands new physical models, and one of the most tested approaches is perturbative Quantum Field Theory (QFT), where we can calculate observables from a given Lagrangian. It is well known that at a given order of perturbation theory, matrix elements can be calculated using Feynman calculus. Existing Mathematica packages such as FeynArts and FormCalc...
Elusive neutrinos are a window to the interior of compact objects, potentially unveiling the behavior of phenomena such as neutron star mergers, core-collapse Supernovae, and the synthesis of elements. As standalone detections or in the context of multi-messengers signals, neutrinos offer opportunities to understand our Universe in unprecedented ways. Interpreting neutrino observations relies...
Investigating neutrino flavor oscillations under the influence of curved spacetime is more involved when the mass eigenstates of the superposition ̶ out of which each neutrino flavor is made ̶ are taken to be wave packets. The subtleties behind applying the wave packet formalism to neutrino flavor oscillations in curved spacetimes, as opposed to the plane wave formalism, will be discussed....
The light-front wavefunction of mesons is the product of the transverse and longitudinal modes. Holographic QCD leads to a Schr\"{o}dinger-like equation for the transverse mode. We show that, when the longitudinal mode is obtained from the 't Hooft equation, the resulting wavefunction predicts remarkably well the meson spectroscopic data.