Speaker
Description
A high yield radioactive ion beam (RIB) can be produced using the intense $\gamma$ beam of the Gamma Factory (GF) [1,2] facility proposed at CERN. The beam impinging on several thin actinide targets will generate exotic neutron-rich nuclei via the photo-fission reaction. The reaction takes place inside a high areal density with orthogonal extraction cryogenic stopping cell (HADO-CSC) [3] where the produced ions are thermalized in high-purity cryogenic helium and extracted with electric fields. We performed GEANT4 simulations for the ion production and transport inside the targets and gas and SIMION simulations for space charge impact study and electric fields optimization. The ion yields achieved [4] demonstrate a great opportunity to make available for measurement and study most exotic and short-lived nuclei. In addition, this work presents a solution for accessing the refractory elements complementary to the ISOL-type facilities, opening a window for synergistic activities with the ISOLDE facility.
[1] Krasny, M. W., The Gamma Factory proposal for CERN, 2015, arXiv:1511.07794 [hep-ex]
[2] Krasny, M. W. and Gamma Factory Study Group, Gamma Factory Proof-of-Principle experiment, Letter-of-Intent (LoI), CERN-SPSC-2019-031, SPSC-I-253, 2019
[3] Dickel, T. et al., Nucl. Inst. and Meth. in Phys. Res. B, 376, 216, 2016
[4] Nichita, D. et al., Annalen der Physik, paper accepted and in production, 2021