Speaker
Description
Nuclear magnetic resonance (NMR) is among the oldest and most widespread techniques in biological and chemical studies, yet observing any but the half dozen most common nuclei remains taxing. β-NMR is not just trying to amend this by putting new nuclei, like alkali metals, back on the NMR-menu, but actively exploiting their properties to gain signal enhancements and novel measurement modi. Due to the combination of Hyperpolarization, β-asymmetry detection, a wide range of available isotopes and real-time beam implantation, β-NMR has already proven its potential to advance the field of magnetic resonance, both in solid and liquid state.
Recently, the VITO-setup at ISOLDE has been upgraded significantly allowing for the first peeks into possible applications. New detection systems, higher magnetic field strengths and improved data acquisition have allowed for high-resolution spectra of alkali metals in low-vapor pressure solvents. Among these were Ionic Liquids, a special class of solvent used in battery-technology and product purification, as well as Deep Eutectic Solvents, known as the green solvents. Both will be used to eventually measure structure and dynamics of biological macromolecules from a novel perspective.