Speaker
Description
Cutting-edge instrumentation has been at the core of relevant discoveries in nuclear physics, and has paved the way for innovative applications and translation to other fields. State-of-the-art detector systems also play a very important role in medical imaging. They have been essential to some of the new developments in positron emission tomography (PET). One of the lines of research of the Nuclear Physics Group at Universidad Complutense deals with the development of instrumentation for nuclear physics with special focus on fast gamma scintillator detectors for fast timing measurements and time-of-flight PET (TOF-PET). In this presentation I will try to address the use of gamma detection systems in several applied fields connected to nuclear physics, and how technical developments have helped extending their scope or even opening new possibilities.
One of the applications of scintillator detectors is related to PET, which has become one of the most relevant medical molecular imaging modalities, used both in cancer diagnosis and in monitoring its response to therapy. I will discuss multiplexed PET image modalities and highlight the latest trends in medical instrumentation towards the ultimate goal of TOF-PET millimetre resolution based on ultrafast scintillator detectors.
The second example of the use of fast scintillator detectors is range verification in protontherapy. While it is recognized that external beam radiotherapy using protons has an advantage over photon therapy due to the maximum energy loss at the end of the proton range, uncertainties in the patient dose deposition still persist, preventing its full exploitation. A way to mitigate this limitation is detecting the induced gamma activity to better locate the distal end of the proton dose distribution.
Finally the presentation will address gamma-MRI, a new proposal for the combination of the high resolution of magnetic resonance imaging, the high sensitivity of PET, and the simplicity of single photon emission compute tomography, based on gamma detection of anisotropic emission from hyperpolarised metastable isotopes.