Speaker
Description
We propose three characteristic relations in developing a simple model of quantum cosmology. We assure the reader that by studying and analyzing them, Lambda cosmology can be refined with ease and clarity.
Relation-1: Galactic light travel distances can be fitted with, $d_G \cong \left(\frac{z}{1+z}\right)\left(\frac{c}{H_0}\right)$.
Relation-2: Relation between current cosmic temperature and Hubble parameter can be expressed as, $T_0 \cong \frac{\hbar c^3}{8 \pi k_B G \sqrt{M_0 M_{pl}}} \cong \frac{\hbar\sqrt{H_0 H_{pl}} }{4 \pi K_B}$ where $\frac{2GM_0}{c^2}\cong \frac{c}{H_0}$, $M_{pl}\cong \sqrt{\frac{\hbar c }{G}}$ and $H_{pl}\cong\frac{1}{2}\sqrt{\frac{c^5 }{G \hbar }} $.
Relation-3: For any galaxy, virtual dark matter can be estimated as, $\left(M_{dark}\right)_G \cong \left[\frac{\left(M_{baryon}\right)_G^{\frac{3}{2}}}{\left(4.0\times 10^{38}\right)^{\frac{1}{2}}}\right] \text{kg}$ where $4.0\times 10^{38} \text{kg} \cong 200 \text{Million solar masses}$ can be called as the 'current dark matter reference mass unit'.