Embedding quarks and gluons in a lower dimensional space for learning the latent structure

15 Aug 2022, 16:40
15m
Auditorium VMP8 (University of Hamburg)

Auditorium VMP8

University of Hamburg

Von-Melle-Park 8 20146 Hamburg Germany
Presentation ML

Speaker

Sang Eon Park (Massachusetts Inst. of Technology (US))

Description

There is a growing recent interest in endowing the space of collider events with a metric structure calculated directly in the space of its inputs. For quarks and gluons, the recently developed energy mover's distance has allowed for a quantification of what is different between physical events. However, the large number of particles within jets makes using metrics and interpreting these metrics particularly difficult. In this work, we introduce a flexible framework based on neural embedding to embed a manifold from a jet to lower-dimensional spaces using a defined metric. We demonstrate a low distortion and robust embedding can be achieved with Energy movers distance in two dimensions. Furthermore, we show that we can construct a self-organized space that captures the core physical features of a jet, including the splitting angularity and the number of prongs. Using the notion of volume in the embedded space, we propose the volume-adjusted roc-curve to measure the energy mover's volume that a dedicated jet selection has on the total phase space of jets. Finally, we equate the volume to the inclusivity of a jet kinematic selection and show how this approach can quantify the effectiveness of anomaly searches and measurements in performing unbiased, inclusive measurements.

Author

Sang Eon Park (Massachusetts Inst. of Technology (US))

Co-authors

Philip Coleman Harris (Massachusetts Inst. of Technology (US)) Bryan Ostdiek (Harvard University)

Presentation materials