The theory of the strong force, Quantum Chromodynamics, describes the proton in terms of quarks and gluons. The proton is a bound state of two up and one down quark, but quantum theory predicts that in addition there is an infinite number of quark-antiquark pairs. Both light and heavy quarks, whose mass is respectively smaller or bigger than the proton’s, are revealed inside the proton in...
Fixed-target experiments at the LHC provide opportunities to study QCD in novel collision systems and in regions of phase space inaccessible to collider experiments. These unique features make fixed-target measurements powerful for constraining parton distribution functions (PDFs) and therefore probing proton and nuclear structure. In this talk, recent measurements of heavy flavour production...
We discuss production of neutral $D$ mesons in proton-proton collisions at the LHC fixed target mode in the framework of the BJM recombination model [1]. We present rapidity and transverse momentum distributions of $D$ mesons and compare the recombination contribution to the dominant gluon-gluon fusion mechanism. Both the direct production, as dictated by the matrix element, and fragmentation...
The talk discusses some developments in the resummation of colour-singlet transverse observables in momentum space, highlighting differences with respect to traditional b-space resummation. Recent results for N3LO fiducial Drell-Yan distributions are presented.