Speaker
Description
QCD phase structure in the nonzero magnetic fields has attracted intensive interest recently as the strong magnetic field is expected to be present in the early stage of peripheral heavy-ion collisions, early universe and magnetars. In this talk we show that fluctuations of and correlations among net baryon number, strangeness and electrical charge can be useful to probe the imprint of the magnetic field in heavy-ion collisions.\
We will show the first continuum estimated lattice QCD results of the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in the presence of a background magnetic field. Lattice simulations of (2+1)-flavor QCD are performed on $32^3$×$8$ and $48^3$×$12$ lattices using the highly improved staggered fermions with a physical pion mass. We focus on a smaller temperature interval around the pseudo-critical temperature ranging from 0.9 $T_{pc}$ to 1.1 $T_{pc}$. To mimic the magnetic field strength produced in the early stage of heavy-ion collision experiments we now have 6 different values of the magnetic field strength up to ∼10$m_{\pi}^2$ with $m_{\pi}$=135 MeV.\
We discuss the temperature and $eB$ dependences of the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness. We find that these second-order fluctuations and correlations are substantially affected by $eB$. We also perform a hadron resonance gas model study to show the connection between experimentally measured proxies and the total fluctuations of conserved charges.
We propose to investigate these quantities in experiments in different centrality classes and collision systems where eB could be different.
[1] H.T.Ding, S.T.Li, Q.Shi and X.D.Wang. Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field
Eur. Phys. J. A \textbf{57} (2021) no.6, 202
[2]Heng-Tong Ding, Sheng-Tai Li, Jun-Hong Liu, Xiao-Dan Wang. Fluctuations of conserved charges in strong magnetic fields from lattice QCD [arXiv:2208.07285]