Speaker
Description
Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a direct detection dark matter (DM) search experiment located at the Laboratori Nazionali del Gran Sasso in Italy. The experiment employs cryogenic and scintillating crystals to search for nuclear recoils from DM particles, and has achieved repeatedly threshold below 100 eV in a wide range of target materials including CaWO$_4$, LiAlO$_2$, Al$_2$O$_3$, and Si. However, at these energies, the ability to discriminate between potential DM signals and electromagnetic background is poor. Moreover, a significant challenge faced by all low-mass dark matter searches, including CRESST, is the existence of unknown event populations at very low energies known as the low energy excesses (LEEs). Therefore, having a reliable background model is of utmost importance.
To understand various background components in the measured spectra by CRESST, a detailed GEANT4-based model was developed and is continuously adapted to CRESST's current inventory of detector modules. I will present CRESST's background model and the related GEANT4-based simulation code "ImpCRESST''. The background model aims to include a wider range of radiopurity measurements for the materials used in the experiment in its future iteration.
In summary, this contribution provides a short overview of the experiment, a detailed status of the background model simulations, and the progress made towards measuring radiopurity in the screening campaign.
Submitted on behalf of a Collaboration? | Yes |
---|