Conveners
Neutrino and Cosmology: inter-track parallel session 1
- thierry lasserre
Neutrino and Cosmology: inter-track parallel session 2
- Elisa Resconi (Technical University Munich)
Neutrino and Cosmology: inter-track parallel session 3
- Ines Gil Botella (Centro de Investigaciones Energéticas Medioambientales y Tecno)
The recent 4.2$\sigma$ evidence of TeV neutrino emission from the
nearby active galaxy NGC 1068 observed by IceCube suggests that
AGN could make a sizable contribution to the diffuse high-energy
astrophysical neutrino flux. The absence of TeV gamma rays from
NGC 1068 indicates neutrino production in the innermost region of the
AGN. Disk-corona models predict a correlation between...
This talk will focus on the latest observations in the study of neutrinos from Seyfert galaxies based on recent results from the IceCube observatory. We will discuss the current understanding of the underlying models that explain the observed neutrino fluxes and explore the implications for the study of high-energy astrophysics. Additionally, we will highlight the prospects for neutrino...
We use the recent discovery of the first steady-state source of high-energy astrophysical neutrinos by IceCube, NGC 1068, to probe the lifetime of neutrinos. By searching for specific features in the energy spectrum of neutrinos, we seek to detect the decay of neutrinos during their journey to Earth. Although the current event rates and uncertainties in the predicted neutrino flux from NGC...
Though their imprint upon the CMB and large-scale structure of the universe remains to this day, Big Bang relic neutrinos (the CνB) have never been directly observed. This remains an outstanding test of the Standard Model in ΛCDM cosmology and would provide the earliest picture of the universe at only 1 second after the Big Bang. PTOLEMY aims to make the first direct observation of the CνB by...
We discuss the phenomenology of neutrino decoupling in the early universe, by summarising the details of the calculation in standard and non-standard scenarios. We quickly present the state-of-the-art calculation of the effective number of neutrino species in the early universe (Neff) in the three-neutrino case, which gives Neff=3.044, and show how the result can change when non-standard...
The accretion disk that forms following a neutron star merger ejects a significant amount of matter that contributes to the appearance of the kilonova transient and the chemical evolution of the Universe. Irradiation of this ejecta by electron neutrinos and antineutrinos changes the composition of this outflow, but neutrinos are also known to change flavor on timescales of nanoseconds...
Collapsar jets may be copious factories of high energy neutrinos, whose production takes place through photo-hadronic and hadronic interactions. Since neutrinos point back to the source that produced them, they have the potential to unravel puzzling features displayed by astrophysical objects. We post-process the outputs of state-of-the-art general relativistic magneto-hydrodynamic simulations...
In this talk we discuss the impact of cosmological measurements on future searches for neutrinoless double-beta decay (0nbb). The fundamental importance of 0nbb for particle physics -- in particular for neutrino physics -- is well known and many efforts are underway to push the experimental sensitivity to values of the half-life of the process above 10^27 years. Current cosmological results...
We consider the minimal see-saw extension of the Standard Model with two right-handed singlet fermions with mass at the GeV scale, augmented by an effective dipole operator between the sterile states. We firstly review current bounds on this effective interaction from fixed-target and collider experiments as well as from astrophysical and cosmological observations. We then highlight the...
MicroBooNE is an 85-tonne active mass liquid argon time projection chamber (LArTPC) at Fermilab. With an excellent calorimetric, spatial and energy resolution, the detector was exposed to two neutrino beams between 2015 and 2020. These characteristics make MicroBooNE a powerful detector not just to explore neutrino physics, but also for Beyond the Standard Model (BSM) physics. Recently,...
ArgoNeuT was a 0.24-ton Liquid Argon Time Projection Chamber (LArTPC) neutrino detector at Fermilab running from 2009 to 2010. It was located along the NuMI neutrino beam upstream of the MINOS near detector and collected six months of data in anti-neutrino beam mode. ArgoNeuT’s dataset has been used to perform numerous first neutrino cross-section measurements on argon. It can also be used to...
The detection of the Diffuse Supernova Neutrino Background (DSNB) flux will provide invaluable insights into constraining cosmological models, core-collapse dynamics and neutrino properties. The Super-Kamiokande Gd (SK-Gd) experiment currently exhibits the best sensitivity for discovery due to enhanced neutron tagging capability with 0.01% gadolinium sulphate loading, as per this analysis....
Future ktonne-scale, scintillation-based neutrino detectors, such as THEIA, plan to exploit new and yet to be developed technologies to simultaneously measure Cherenkov and scintillation signals in order to provide a rich and broad physics program. These hybrid detectors will be based on fast timing photodetectors, novel target materials, such as water-based liquid scintillator (WbLS), and...
The RES-NOVA project will hunt neutrinos from core-collapse supernovae (SN) via coherent elastic neutrino-nucleus scattering (CEνNS) using an array of archaeological lead (Pb) based cryogenic detectors. The high CEνNS cross-section on Pb and the ultra-high radiopurity of archaeological Pb enable the operation of a highly sensitive neutrino observatory, equally sensitive to all neutrino...
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose liquid scintillator (LS) detector currently under construction in southern China. One of the capabilities of JUNO detector is to search for the baryon number violation processes, which would be a crucial step towards testing the GUT and explaining the matter-antimatter asymmetry of the Universe. The nucleon decay...
KM3NeT is a cubic kilometer neutrino underwater telescope which is located in the Mediterranean Sea. The commissioning of the detector infrastructure is currently underway. The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very high energies. Both collaborations contributed to ESCAPE, the European Science Cluster of Astronomy and...
The IceCube Neutrino Observatory, situated at the South Pole, has detected all-flavour astrophysical neutrinos with energies exceeding $\sim{1}$ TeV, providing a unique perspective on the physics of cosmic ray acceleration and propagation. In this study, we analyse a decade of data and use three event types—through-going tracks, showers, and starting tracks—to maximise our discovery potential...