Andrew Gilbert
(Northwestern University (US))
02/12/2022, 09:30
Eleonora Rossi
(University of Oxford (GB))
02/12/2022, 09:55
Sergio Sanchez Cruz
(Universitaet Zuerich (CH))
02/12/2022, 10:20
Fabian Stager
(University of Zurich (CH))
02/12/2022, 11:15
Tim Cohen
(CERN)
02/12/2022, 11:40
Kristin Lohwasser
(University of Sheffield (GB))
02/12/2022, 11:55
Andrei Gritsan
(Johns Hopkins University (US))
02/12/2022, 13:30
Robert Schoefbeck
(Hephy Vienna)
02/12/2022, 13:55
Lukas Alexander Heinrich
(Technische Universitat Munchen (DE))
02/12/2022, 14:20
Olivier Mattelaer
(UCLouvain)
02/12/2022, 14:45
Jannis Lang
02/12/2022, 15:41
Tisa Biswas
(University of Calcutta)
02/12/2022, 15:46
Mr
Matthew Knight
(Imperial College London)
02/12/2022, 16:11
Abideh Jafari
(Deutsches Elektronen-Synchrotron (DE))
02/12/2022, 16:16
Jaco ter Hoeve
(Nikhef and VU Amsterdam)
02/12/2022, 16:41
Nick Smith
(Fermi National Accelerator Lab. (US))
02/12/2022, 16:46
Jacob Julian Kempster
(University of Sussex (GB))
02/12/2022, 17:16
Kirill Skovpen
(Ghent University (BE))
02/12/2022, 17:21
Matteo Presilla
(Istituto Nazionale di Fisica Nucleare)
02/12/2022, 17:31
Kristin Lohwasser
(University of Sheffield (GB))
02/12/2022, 18:01
Kristin Lohwasser
(University of Sheffield (GB))
02/12/2022, 18:16
Nick Smith
(Fermi National Accelerator Lab. (US))
For binned likelihood fits, a (dimension-6) quadratic EFT parameterization of the bin yield can be represented as a matrix norm. Often, this matrix is low-rank, presenting a possibility for more efficient computation in large fits. Analyzing the eigenspectrum of this matrix may also provide a path towards incremental optimization of binning, providing an intermediate approach to EFT analysis...
Ilaria Brivio
(University of Zurich)