The purpose of this paper is to calculate the longitudinal and transverse wakefields of the FCC collimators by using the electromagnetic codes ECHO3D and IW2D. We cross-checked our results using CST particle studio for long bunches, and found them to be in good agreement. The obtained results show that the collimators give one of the highest contributions to the overall FCC-ee wake potentials....
We present recent developments and PSD data from the FCC-BESTEX experimental beamline at the KARA synchrotron at KIT on one FCC-hh beam screen, as well as future plans for measuring FCC-ee vacuum paper prototypes at the beamline. In addition, we demonstrate VacuumCOST, a new software tool that has been developed to enable more dynamic MolFlow simulations, including the pressure evolution in...
The machine-detector interface (MDI) issues are one of the most complicate and challenging topics at the Circular Electron Positron Collider (CEPC). Comprehensive understandings of the MDI issues are decisive for achieving the optimal overall performance of the accelerator and detector. The CEPC machine will operate at different beam energies, from 45.5 GeV up to 120 GeV, with an instantons...
Simulation study is more and more essential in the design and study of a modern e+e- collider. Existing tools often simplify the lattice model in beam-beam or collective effects study. GPU provide the feasibility to implement element-by-element tracking with large amount of particles and limited computing resources. New e+e- collider need more self-consistent simulation to predict the beam...
Diboson production processes constitute an interesting probe of New Physics related to the Higgs boson and the EW sector. We study the 𝑊ℎ and 𝑍ℎ production processes, with leptonically decaying gauge bosons and both $h\to b\bar b$ and $h\to\gamma\gamma$ decay channels. We study these processes in the SMEFT framework and derive bounds on six dimension-6 operators. The possibility of using the...
Recent studies reveal the potential of the Tera-Z phase of the Future Circular Collider (FCC) for advancing our understanding of flavor physics. By operating at the Z-pole, the FCC enables the production of vast amounts of heavy flavor final states, making it an ideal platform to study Standard Model (SM) and Beyond Standard Model (BSM) physics. With a high integrated luminosity and large...
The energy stored in Circular Electron and Positron Collider (CEPC) is in the order of MJ, which will make the beam pipe and other equipment broken once the beam loses control. Avoiding damage to accelerator is the first priority for machine protection. There are two kinds of protection schemes. One is active protection in which an action should be triggered when a failure signal is detected,...
The understanding of beam-beam effects, drivers of the FCC-ee parameter design in several aspects, require sophisticated and high-performance numerical simulations. The self-consistent study of the interplay of several nonlinear dynamical phenomena resulting from collisions in the machine is key to accurately assess its potential performance. Although current simulation frameworks can address...
Euclid Techlabs LLC, in collaboration with JLab and Fermilab, has developed a new ceramic material with a finite DC electrical conductivity combined with a low RF loss tangent for use in high power coupler windows. The goal of the project was to develop windows with a loss tangent not exceeding that of alumina but with significantly increased DC conductivity for effective electrical discharge....
The study of Dynamic Aperture (DA) plays a crucial role in understanding non-linear beam dynamics in circular accelerators. The DA defines the phase-space region where particles' motion remains bounded over a finite number of turns. It is affected by various elements such as the regular magnetic lattice, magnetic field imperfections, beam-beam effects, electron clouds, and other nonlinear...
The study of the Higgs boson self-coupling at the $e^+e^-$ Future Circular Collider (FCC-ee) is extremely challenging due to the small di-Higgs production cross section. This is however a crucial property, which may have far-reaching implications in our understanding of particle physics. It will be studied at the HL-LHC but with an expected sensitivity limited by the foreseen data statistics....
My poster has three topics: the dump designs for the CPEC collider and linac, the synchrotron radiation shielding for magnet insulations, and the estimation for radioactivity production in the surrounding materials.
A design for the collider dump including a dilution system is updated. The material of the dump core is made of graphite while this core is surrounded with iron. The maximum...
The operation of the Future Circular Electron Positron Collider (FCC-ee) necessitates a robust longitudinal bunch diagnostics system for precise beam energy calibration and efficient top-up injection monitoring. As part of the FCC Innovation Study (FCCIS), an electro-optical (EO) bunch profile monitor is developed, based on the developments of the EO near-field monitor at the Karlsruhe...
Regarding high current e+ sources, the almost universal usage of target-based production schemes combined with conventional capture technology has led to poor transmission efficiencies. This long-standing difficulty to handle the extreme e+ transverse emittance and energy spread has been a major impediment for future, high luminosity lepton collider designs. The PSI Positron Production...
Ferroelectric ceramic materials with low loss tangent at RF frequencies allow development of electrically controlled devices (tuners) with extremely fast switching times (τ<100 ns). This offers the possibility of a Ferroelectric fast reactive tuner (FE-FRT) ferroelectric cavity tuner, operating at room temperature, that can: (1) alter the coupling between the transmission line and the...
Future ElectroWeaK factories require unprecedented highly granular jet calorimeters energy resolution. This goal appears to be achievable only with an imaging calorimeter it exploits particle flow algorithms or a fiber sampling Dual Readout (DR) calorimeter using scintillation and Cerenkov effects, the former produced by all ionising particles, the latter only by relativistic charged...
This poster presents a study on the structural optimization of the support structure for the interaction region (IR) of the Future Circular Collider (FCC). The aim is to optimize the structure to reduce the mass, maintaining the stifness needed. Finite element analysis (FEA) is used to develop a detailed numerical model considering complex geometries, material properties, and loading...
The circulant matrix model was succefuly used to study mode coupling instabilities in the presence of electromagnetic wakefields, space-charge, beam-beam interactions and active feedbacks. The following work shows the implementation of beam-beam interactions with flat beams in the code BimBim in order to address issues encountered in electron positron collider such the FCC-ee or SuperKEKB. The...
We present preliminary results for an alternative coupling compensation scheme for the FCC-ee IR, based on the novel HFD lattice recently proposed by P. Raimondi, but that in principle can be implemented also in the baseline IR design. The study shows a very good correction of the IR coupling induced by the detector solenoid using skew quads, resulting in an increase of the vertical emittance...
Beamstrahlung is a dominant effect in the beam dynamics of the high luminosity next-generation lepton collider FCC-ee. We characterize the beamstrahlung radiation for the beam parameters at the four operating energies, and present the effect of this radiation in the Machine-Detector-Interface region. We discuss the conceptual need for a photon dump due to the high power produced, which is in...
The Vacuum Group at CERN are undertaking various studies for FCC-ee R&D. One avenue of work is focused on the vacuum chamber (beam screen) and its associated components. The designs for the interconnections between the beam screens have been completed and are now undergoing intensive impedance simulation for beam stability checks. The enormous scale of FCC-ee poses a significant challenge in...
One of the most fundamental measurements since the Higgs boson discovery, is its Yukawa couplings. Such a measurement is only feasible, if the centre-of-mass (CM) energy spread of the e+e- collisions can be reduced from ~50 MeV to a level comparable to the Higgs boson’s natural width of ~4 MeV. To reach such desired collision energy spread and improve the CM energy resolution in colliding-beam...
The FCC-ee HTS4 (High-Temperature-Superconducting Short Straight Section) project, a collaboration between CERN and PSI, aims at the replacement of normal conducting short straight sectors of the FCC-ee main storage ring with high-temperature-superconducting (HTS) ones. The study focuses on the creation of a 1-meter-long (full-size) prototype module, which consists of a nested quadrupole -...
A dedicated study is being undertaken at CERN, together with the FCC Feasibility Study collaborators, to propose a robust configuration for the FCC-ee arc half-cell considering all integration aspects of the elements. This study includes engineering analyses performed to design the supporting system of the booster and of the collider. The proposed layout must meet requirements in terms of...
The design of the electron-positron Future Circular Col-
lider (FCC-ee) challenges the requirements on optics codes
(like MAD-X) in terms of accuracy, consistency, and per-
formance. This paper analyses MAD-X TWISS, TRACK
and EMIT modules by comparing their mutual consistency,
absolute accuracy and stability and will make improvement
proposals.
This paper summarizes the first iteration of the FCC-ee kicker magnet design parameters. There will be 5 different kicker and septum systems in the FCC-ee complex. This work mainly focuses on the kicker magnet design for the beam dump system. A MATLAB script was created for automatized iteration on the design and optimization of the kicker magnet. The input parameters of this script are the...