Conveners
Session 3.4
- Chair: Luca Tagliacozzo (Institute of Fundamental Physics)
Session 3.4
- Chair: Andres Gomez Tato
Session 3.4
- Chair: Elías Combarro (University of Oviedo)
In this contribution I will present ideas and ongoing project to enhance the capabilities of particle detectors using quantum systems [1]. The presented technologies could not only improve the accuracy of measurements but also provide a new dimension by directly sensing properties as spin of individual particles. The level of maturity and applicability of ideas range from those already proved...
As important branches in quantum technologies, quantum sensing and quantum metrology have experienced significant progress, placing themselves at the forefront of the new generation of technologies harnessing quantum effects. In this presentation, different quantum magnetometers assisted by neural networks are introduced. Our results show that neural networks are valuable in distinct quantum...
We present a method to identify energy shifts which contain structural information in solid-state systems using Nitrogen-Vacancy (NV) centers combined with synchronization techniques. To achieve this, we have developed a theory for Lee-Goldburg based decoupling schemes in microscale-NMR scenarios with NV centers at large static magnetic fields. The introduced RF fields serve two purposes: (i)...
In recent years, there has been a growing interest in utilizing hole spins in silicon and germanium for quantum information processing. One reason for this is the strong spin-orbit interaction present in the valence band of these materials, which allows for versatile interactions with electric fields. As a result, there have been demonstrations of fast electrical manipulation of hole spin...
Combinatorial optimization problems (CO) have a strong impact on a wide range of disciplines such as finance, machine learning, logistics, etc. In addition to finding a solution with minimum cost, problems of high relevance involve a number of constraints that the solution must satisfy. Variational quantum algorithms (VQA) have emerged as promising candidates for solving these problems in the...
Enhanced coherence in HoW$_{10}$ molecular spin qubits has been demonstrated by use of clock-transitions (CTs) . More recently it was shown by some of us that, while operating at the CTs, it was possible to use an electrical field to selectively address HoW$_{10}$ molecules pointing in a given direction, within a crystal that contains two kinds of identical but inversion-related molecules [2]....
Quantum illumination is one of the main paradigms for implementing quantum radar in the low-frequency spectrum. Here, we contribute towards an open-air application of the protocol, by notably easing its experimental requirements. We first define an experimentally feasible receiver for an entangled signal-idler transmitter. This consists in measuring heterodyne the received signal and...
Variational quantum algorithms (VQAs) are one of the most promising NISQ-era algorithms due to their feasibility for their application in vastly diverse fields. Machine learning, quantum chemistry, mathematics, finance or combinatorial problems can be tackled through VQAs. However, the underlying optimization processes within these algorithms usually deal with local minima and barren plateau...
Recent progress in the development of quantum technologies has enabled the direct investigation of dynamics of increasingly complex quantum many-body systems. This motivates the study of the complexity of classical algorithms for this problem in order to benchmark quantum simulators and to delineate the regime of quantum advantage. Here we present classical algorithms for approximating the...
In recent years, a lot of effort has been put into expanding established jet-quenching formalisms to account for higher-order or energy-suppressed medium-induced effects. Understanding how such contributions emerge is important to have a more complete picture of jet evolution in the medium and to extract more detailed properties of the underlying matter. However, such efforts are in general...
We propose a new variational ansatz for the ground state preparation of the two-dimensional $\mathbb{Z}_2$ lattice gauge theory in digital quantum computers. It is similar to the well known QAOA, but it contains half Trotter step of an imaginary time propagator, which increases the fidelities reached around the phase transition of the gauge theory. We propose a non-probabilistic...