28 February 2023 to 2 March 2023
FBK, Trento
Europe/Rome timezone

Time resolution of single pixel irradiated 3D devices up to $1 \times 10^{17}\;n_{eq}/cm^{2}$ at 120 GeV SPS pion beams

1 Mar 2023, 11:50
20m
Aula Grande (FBK, Trento)

Aula Grande

FBK, Trento

Via Santa Croce, 77 38122 Trento ITALY
Oral 3D Sensors 3D Sensors

Speaker

Dr Vagelis Gkougkousis (CERN)

Description

The proven radiation hardness of silicon 3D devices up to fluences of $1 \times 10^{17}\;n_{eq}/cm^{2}$ makes them an excellent choice for next generation trackers, providing $<10\;\mu m$ position resolution at a high multiplicity environment. The anticipated pile-up increase at HL-LHC conditions and beyond, requires the addition of < 50 ps per hit timing information to successfully resolve displaced and primary vertices. In this study, the timing performance, uniformity, and efficiency of neutron irradiated single pixel 3D devices is discussed. Fluences up to $1\times10^{17}\;n_{eq}/cm^{2}$ in three different geometrical implementations are evaluated at 120 GeV SPS pion beams. A MIMOSA26 type telescope is used to provide detailed tracking information with a ~$ 5\;\mu m$ position resolution. Productions with single- and double-sided processes, yielding active thickness of 130 and 230 $\mu m$ respectively, are examined. Pixel sizes vary from $55 \times 55\;\mu m^{2}$ to $25 \times 100\;\mu m^{2}$ and a comparative study of field uniformity is presented with respect to electrode geometry.

Author

Presentation materials

There are no materials yet.