Conveners
Reconstruction & Representation Learning
- Peter Loch (University of Arizona (US))
Supervised learning has been used successfully for jet classification and to predict a range of jet properties, such as mass and energy. Each model learns to encode jet features, resulting in a representation that is tailored to its specific task. But could the common elements underlying such tasks be combined in a single model trained to extract features generically? To address this question,...
We present CoCo (Contrastive Combinatorics) a new approach using contrastive learning to solve object assignment in HEP. By utilizing contrastive objectives, CoCo aims to pull jets originating from the same parent closer together in an embedding space while pushing unrelated jets apart.
This approach can be extended natively to have multiple objectives for each subsequent particle in a decay...
Last year we proposed a novel hypergraph-based algorithm (HGPflow) for one-shot prediction of particle cardinality, class, and kinematics in a dataset of single jets. This approach has the advantage of introducing energy conservation as an inductive bias, promoting both interpretability and performance gains at the particle and jet levels. We now deploy an upgraded version of HGPflow to the...
We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow (PF) reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid...
The Bert pretraining paradigm has proven to be highly effective in many domains including natural language processing, image processing and biology. To apply the Bert paradigm the data needs to be described as a set of tokens, and each token needs to be labelled. To date the Bert paradigm has not been explored in the context of HEP. The samples that form the data used in HEP can be described...
The reconstruction of physical observables in hadron collider events from recorded experimental quantities poses a repeated task in almost any data analysis at the LHC. While the experiments record hits in tracking detectors and signals in the calorimeters, which are subsequently combined into particle-flow objects, jets, muons, electrons, missing transverse energy, or similar high-level...