ML4Jets2023

from Monday 6 November 2023 (08:30) to Friday 10 November 2023 (16:00)
DESY (Main Auditorium)

        : Sessions
    /     : Talks
        : Breaks
6 Nov 2023
7 Nov 2023
8 Nov 2023
9 Nov 2023
10 Nov 2023
AM
08:30 --- Arrival and Coffee ---
09:15
Opening - Gregor Kasieczka (Hamburg University (DE)) (until 10:30)
09:15 Welcome and Logistics  
09:30 Experimental Introducton - Kevin Pedro (Fermi National Accelerator Lab. (US))  
10:00 Modern Machine Learning for the LHC Simulation Chain - Ramon Winterhalder (UCLouvain)  
10:30 --- Coffee ---
11:00
Generative Models and Simulation - Ramon Winterhalder (UCLouvain) (until 12:30)
11:00 Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows - Thorsten Buss (Universität Hamburg (DE))  
11:15 Pushing Normalizing Flows for higher-dimensional Detector Simulations - Florian Ernst  
11:30 Attention to Mean Fields for Particle Cloud Generation - Benno Kach (Deutsches Elektronen-Synchrotron (DE))  
11:45 Latent Generative Models for Fast Calorimeter Simulation - Qibin Liu (Tsung-Dao Lee Institute (CN) & Shanghai Jiao Tong University (CN))  
12:00 New Angles on Fast Calorimeter Shower Simulation - Peter McKeown  
12:15 Improved selective background Monte Carlo simulation at Belle II with graph attention networks and weighted events - Boyang Yu  
11:00
Tagging Techniques -Prof. Freya Blekman (Deutsches Elektronen-Synchrotron (DE)) (until 12:30)
11:00 Reconstructing and calibrating hadronic objects with ML/AI algorithms in ATLAS - Tobias Fitschen (University of Manchester (GB))  
11:15 Boosted Jet Tagging and Calibration in CMS - Oz Amram (Fermi National Accelerator Lab. (US))  
11:30 Vertex Reconstruction with Transformers - Nikita Ivvan Pond (University of London (GB))  
11:45 Performance of heavy flavour jet identification in boosted topologies in CMS 13 TeV data - Matteo Marchegiani (ETH Zurich (CH))  
12:00 Towards Novel Charged Particle Tracking Approaches with Transformer and U-Net Models - Zef Wolffs (Nikhef National institute for subatomic physics (NL))  
09:00
Low Latency and Elementary Inputs - Artur Lobanov (Hamburg University (DE)) (until 10:30)
09:00 Deep learning methods for noise filtering in the NA61/SHINE experiment - Marcin Slodkowski (Warsaw University of Technology (PL))  
09:15 The application of neural networks for the calibration of topological cell clusters in the ATLAS calorimeters - Peter Loch (University of Arizona (US))  
09:30 Jets as sets or graphs: Fast jet classification on FPGAs for efficient triggering at the HL-LHC - Denis-Patrick Odagiu (ETH Zurich (CH))  
09:45 A Convolutional Neural Network for topological fast selection algorithms in FPGAs for the HL-LHC upgrade of the CMS experimen - Maciej Mikolaj Glowacki (University of Bristol (GB))  
10:00 Realtime Anomaly Detection in the CMS Experiment Global Trigger Test Crate - Jannicke Pearkes (University of Colorado Boulder (US))  
10:15 LLPNet: Graph Autoencoder for Triggering Light Long-Lived Particles at HL-LHC - Mr Prabhat Solanki (Indian Institute of Science, Bengaluru)  
09:00
Theory & Understanding - David Shih (until 09:45)
09:00 Learning a Representation of New Physics Models - Tore von Schwartz  
09:15 Anatomy of Jet classification using deep learning - Sung Hak Lim (Rutgers University)  
09:30 Hyperbolic Machine Learning for Jet Physics - Nathaniel Sherlock Woodward (Massachusetts Inst. of Technology (US))  
10:30 --- Coffee ---
11:00
Generative: Sets and Point Clouds -Dr Claudius Krause (Rutgers University) (until 12:30)
11:00 Fitting a deep generative hadronization model - Adam Kania (Jagiellonian University)  
11:15 Fast Particle Cloud Generation with Flow Matching and Diffusion - Cedric Ewen  
11:30 Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information - Joschka Valentin Maria Birk  
11:45 CaloPointFlow - Generating Calorimeter Showers as Point Clouds - Simon Schnake (DESY / RWTH Aachen University)  
12:00 PC-Droid: Jet generation with diffusion - Debajyoti Sengupta (Universite de Geneve (CH))  
12:15 DeepTreeGAN: Fast Generation of High Dimensional Point Clouds - Mr Moritz Scham (Deutsches Elektronen-Synchrotron (DE))  
09:00
Astrophysics and Astronomy - David Shih (until 10:30)
09:00 Machine Learning in Astrophysics and Astronomy - Caroline Heneka  
09:30 Mapping Dark Matter in the Milky Way using Normalizing Flows and Gaia DR3 - Eric Putney (Rutgers, The State University of New Jersey)  
09:45 Bayesian Insights into the high-redshift Universe with 21cmPIE-cINN - Benedikt Schosser (Heidelberg University) Theo Heimel (Heidelberg University)  
10:00 PINNflation solving the dynamics of Inflation using Physics Informed Neural Nets - Lennart Röver (Heidelberg University)  
10:15 ML Approach to Infer Galaxy Cluster Masses from eROSITA X-ray Images - Nicolas Barón Pérez  
10:30 --- Coffee ---
11:00
Community & Datasets - Matt LeBlanc (University of Manchester (GB)) (until 11:30)
11:00 The HEP-ML Living Review - Ramon Winterhalder (UC Louvain) Dr Claudius Krause (Rutgers University) Johnny Raine (Universite de Geneve (CH))  
11:15 Open Data Detector: public dataset(s) for ML studies - Anna Zaborowska (CERN)  
11:30
Taggers & Understanding - Matt LeBlanc (University of Manchester (GB)) (until 12:15) (Main Auditorium)
11:30 Evaluating Equivariance for Reconstruction - Savannah Thais  
11:45 Constituent based Quark/Gluon Jet Tagging - Samuel Jankovych (Charles University (CZ))  
12:00 Quark versus gluon tagging in CMS Open Data with CWoLa and TopicFlow - Ayodele Ore  
09:00
Anomalies - Vinicius Massami Mikuni (Lawrence Berkeley National Lab. (US)) (until 10:00)
09:00 Non-resonant Anomaly Detection with Background Extrapolation - Kehang Bai (University of Oregon (US))  
09:15 R-ANODE - Ranit Das (Rutgers University)  
09:30 Anomaly Detection in Collider Physics via Factorized Observables - Raymond Wynne (MIT)  
09:45 Unsupervised tagging of semivisible jets with normalized autoencoders in CMS - Florian Eble (ETH Zurich (CH))  
10:00
Generative (until 10:30)
10:00 Ultra-fast generation of Air Shower Images for Imaging Air Cherenkov Telescopes with Generative Adversarial Networks - Christian Elflein (Erlangen Centre for Astroparticle Physics)  
10:15 ParticleGrow: Event by event simulation of heavy-ion collisions via autoregressive point cloud generation - Manjunath Omana Kuttan (Frankfurt Institute for Advanced Studies)  
10:30 --- Coffee ---
11:00
Generative - Frank-Dieter Gaede (Deutsches Elektronen-Synchrotron (DE)) (until 12:30)
11:00 caloutils - Utilities and Metrics for Generative Models of Calorimeter Showers - Mr Moritz Scham (Deutsches Elektronen-Synchrotron (DE))  
11:15 Understanding generative networks via classifier weight distributions - Luigi Favaro  
11:30 Level up your performance calculation of the fast shower simulation model - Anna Zaborowska (CERN)  
11:45 The New Physics Learning Machine: machine learning for goodness-of-fit via Neyman—Pearson testing - Dr Marco Letizia (MaLGa Center, Università di Genova and INFN)  
12:00 The Fast Calorimeter Simulation Challenge 2022 - Dr Claudius Krause (Rutgers University)  
09:00
Results, Observables & Techniques - Andreas Hinzmann (Deutsches Elektronen-Synchrotron (DE)) (until 10:30)
09:00 Giving events a new shape : measurements of multijet event isotropy at ATLAS using optimal transport - Matt LeBlanc (University of Manchester (GB))  
09:15 Sensitivity Studies for Search of B+ → K∗+ νν using Lorentz Equivariant Neural Networks at the Belle II Experiment - Caspar Schmitt  
09:30 DeGeSim: Conditional Denoising Diffusion Probabilistic Models as Multi-Dimensional Density Mappers for Continuous and Discrete State Spaces - Judith Katzy (Deutsches Elektronen-Synchrotron (DE)) Stephen Jiggins (Deutsches Elektronen-Synchrotron (DE))  
09:45 Jet formation with Chebyshev Polynomials - Henry Day-Hall (Czech Technical University in Prague (CZ))  
10:00 Weakly supervised training for optimal transport pileup mitigation strategies at hadron colliders - Nathan Suri Jr (Yale University (US))  
10:15 Model-agnostic search for dijet resonances with anomalous jet substructure with the CMS detector - Louis Moureaux (Hamburg University (DE))  
10:30 --- Coffee ---
11:00
Closing - Tilman Plehn (until 12:10)
11:00 Theory Closure - Michael Kramer (Rheinisch Westfaelische Tech. Hoch. (DE))  
11:30 Closing and Final Remarks - Gregor Kasieczka (Hamburg University (DE))  
11:35 Announcement of ML4Jets 2024  
PM
12:30 --- Lunch ---
14:00
Reconstruction - Jeremi Niedziela (Deutsches Elektronen-Synchrotron (DE)) (until 15:30)
14:00 Event Reconstruction with GNNs at the FCC - Dolores Garcia (CERN)  
14:15 Time-of-Flight Estimation using Machine Learning Techniques - Konrad Helms  
14:30 Set2Tree: Particle decay reconstruction via GNN - Dmitrii Kobylianskii (Weizmann Institute of Science (IL))  
14:45 End-to-end analysis with jointly optimized particle identification and analysis optimization objectives - Matthias Vigl (Technische Universitat Munchen (DE))  
15:00 ν²-Flows: Fast and improved neutrino reconstruction in multi-neutrino final states with conditional normalizing flows - Mr Matthew Leigh (University of Geneva) Johnny Raine (Universite de Geneve (CH))  
15:15 Reconstructing ALP properties and optimizing experimental design with simulation-based inference - Alessandro Morandini  
14:00
Super Resolution, Reweighting, and Refinement - Kevin Pedro (Fermi National Accelerator Lab. (US)) (until 15:30)
14:00 Regression-based refinement of fast simulation - Moritz Jonas Wolf (Hamburg University (DE))  
14:15 Refining Fast Calorimeter Simulations with a Schrödinger Bridge - Sascha Diefenbacher (Lawrence Berkeley National Lab. (US))  
14:30 SuperCalo: Calorimeter shower super-resolution - Ian Pang  
14:45 Denoising Graph Super-Resolution with Diffusion Models and Transformers for Improved Particle Reconstruction - Nilotpal Kakati (Weizmann Institute of Science (IL))  
15:00 SR-GAN for SR-gamma: photon super resolution at collider experiments - Florian Alexander Mausolf (Rheinisch Westfaelische Tech. Hoch. (DE))  
15:30 --- Coffee ---
16:00
Reconstruction & Representation Learning - Peter Loch (University of Arizona (US)) (until 18:15)
16:00 Generic representations of jets at detector-level with self supervised learning - Etienne Dreyer (Weizmann Institute of Science (IL))  
16:15 CoCo: Contrastive Combinatorics - Debajyoti Sengupta (Universite de Geneve (CH))  
16:30 Identifying semi-visible jets with darkCLR - Tanmoy Modak  
16:45 Reconstructing full pp collision events with HGPflow - Nilotpal Kakati (Weizmann Institute of Science (IL))  
17:00 --- Breathing (Chair's discretion) ---
17:30 Scalable neural network models and terascale datasets for particle-flow reconstruction - Joosep Pata (National Institute of Chemical Physics and Biophysics (EE))  
17:45 Masked particle modelling - Mr Matthew Leigh (University of Geneva)  
18:00 ML-assisted reconstruction of hadron-collider events with mini-jets - Josef Modestus Murnauer (Max Planck Society (DE))  
18:30 --- Reception ---
12:30 --- Lunch ---
13:45
Generative: Diffusion Models - Johnny Raine (Universite de Geneve (CH)) (until 15:30)
13:45 Conditional Set-to-Set Generation for Fast Simulation using Diffusion and Graph-to-Graph Translation - Nathalie Soybelman (Weizmann Institute of Science (IL))  
14:00 CaloGraph: Calorimeter simulation via Graph-based diffusion model - Dmitrii Kobylianskii (Weizmann Institute of Science (IL))  
14:15 High-Dimensional Diffusion Generative Models in Collider Physics - Vinicius Massami Mikuni (Lawrence Berkeley National Lab. (US))  
14:30 CaloDiffusion with GLaM for High Fidelity Calorimeter Simulation - Kevin Pedro (Fermi National Accelerator Lab. (US))  
14:45 Diffusion Models for the LHC - Sofia Palacios Schweitzer (ITP, University Heidelberg)  
15:00 CaloClouds: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation - Erik Buhmann (Hamburg University (DE))  
15:15 CaloLatent: Score-based Generative Modelling in the Latent Space for Calorimeter Shower Generation - Thandikire Madula (University College London)  
14:00
Generative: Partons and Phase Space - Ramon Winterhalder (UCLouvain) (until 15:30)
14:00 Learning the language of QCD jets with transformers - Dr Alexander Mück (RWTH Aachen University)  
14:15 Off-Shell Processes from Neural Networks - Mathias Kuschick  
14:30 High multiplicity with JetGPT - Jonas Spinner  
14:45 Generate parton-level events from reconstructed events with Conditional Normalizing Flows - Davide Valsecchi (ETH Zurich (CH))  
15:00 MEMeNNto – Matrix Element Method with Neural Networks - Nathan Huetsch (Institut für Theoretische Physik, Universität Heidelberg)  
15:15 The MadNIS Reloaded - Theo Heimel (Heidelberg University)  
15:30 --- Coffee ---
16:00
Physics ex machina: Machine learning for fundamental physics (until 17:00)
16:00 Keynote: Physics ex machina - Machine learning for fundamental physics - David Shih  
17:00 --- Brezels ---
19:00 Public Film Preview and Public Discussion (in German, not part of ML4Jets - but you are invited)  
12:15
Workshop Photo (until 12:30)
12:30 --- Lunch ---
14:00
Energy Correlators, Safety & Symmetry - Savannah Thais (until 15:30)
14:00 ML for jets and beyond jets - Huilin Qu (CERN)  
14:30 PELICAN Update: Equivariance, Explainability, and Robustness in Jet ML - Timothy Hoffman  
14:45 Particle Transformer with built-in IRC safety - Congqiao Li (Peking University (CN))  
15:00 Combining Energy Correlators with Machine Learning - Katherine Fraser (Harvard University)  
15:15 SPECTER: Efficient Evaluation of the Spectral EMD - Rikab Gambhir (MIT)  
15:30 --- Coffee ---
16:00
Anomalies - Huilin Qu (CERN) (until 17:45) (Seminarraum 4a/b)
16:00 Back to the Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection - Marie Hein (RWTH Aachen University)  
16:15 Robust Anomaly Detection in the Presence of Irrelevant Features - Yik Chuen San  
16:30 Drapes: Diffusion for weak supervision - Mr Matthew Leigh (University of Geneva)  
16:45 The Interplay of Machine Learning–based Resonant Anomaly Detection Methods - Radha Mastandrea (University of California, Berkeley)  
17:00 Full Phase Space Resonant Anomaly Detection - Cedric Ewen  
17:15 Combining resonant and tail-based anomaly detection - Gerrit Bickendorf (Universität Bonn)  
16:00
Measurements & Observables - Andreas Korn (University College London (GB)) (until 17:30)
16:00 Classifying the CP properties of the ggH coupling in H+2j production - Henning Bahl  
16:15 Returning CP-Observables to the Frames they Belong - Jona Ackerschott  
16:30 End-To-End Latent Variational Diffusion Models for Unfolding LHC Events - Kevin Thomas Greif (University of California Irvine (US))  
16:45 Deep learning assisted unbinned measurements of jet substructure observables with the H1 detector - Vinicius Massami Mikuni (Lawrence Berkeley National Lab. (US))  
17:00 Exploring the universality of jet quenching via Bayesian inference - Alexandre Falcão (University of Bergen)  
17:15 Apples to Apples in Jet Quenching - João A. Gonçalves (LIP - Lisbon / IST - Universidade de Lisboa)  
12:30 --- Lunch ---
14:00
Uncertainties, Calibration & Theory - Matthias Schroeder (Hamburg University (DE)) (until 15:45)
14:00 The DL Advocate: Playing the devil's advocate with hidden systematic uncertainties - Andrea Mauri (Imperial College (GB))  
14:15 Systematic Effects in Jet Tagging Performance for the ATLAS Detector - Kevin Thomas Greif (University of California Irvine (US))  
14:30 Evaluating Neural Network Uncertainty Estimation with Inconsistent Training Data - Giovanni De Crescenzo  
14:45 Generalization Properties of Jet Classification - Sebastian Guido Bieringer (Hamburg University)  
15:00 Deciphering the Structure of EFTs from String Theory using JAX and Reinforcement Learning - Dr Andreas Schachner (Ludwig-Maximilians-Universität München)  
15:15 Towards a phenomenological understanding of neural networks - Samuel Tovey (University of Stuttgart)  
15:30 Machine Learning to Understand String Theory EFTs - Dr Sven Krippendorf (LMU Munich)  
15:45 --- Coffee ---
16:15
Anomalies - Michael Kraemer (Particle Physics) (until 17:00)
16:15 Cluster Scanning - Mr Ivan Oleksiyuk (UNIGE)  
16:30 Anomaly Detection in High Energy Physics via Non-Gaussian Variational Autoencoders - Thomas Dartnall Stern (University of Cape Town (ZA))  
16:45 Quantum anomaly detection in the latent space of proton collision events at the LHC - Vasilis Belis (ETH Zurich (CH))  
17:20
Remote Discussion (until 18:00)
17:20 Binary Discrimination at Next-to-Leading Order - Andrew Larkoski (UCLA)  
17:25 Scalar Field Theories via Neural Networks at Initialization - Anindita Maiti (Perimeter Institute for Theoretical Physics)  
17:30 Learning Broken Symmetries with Encouraged Invariance - Edmund Witkowski (UCI) Daniel Whiteson (University of California Irvine (US))  
17:35 HEP ML Lab — An end-to-end framework for signal vs background analysis in high energy physics - Jing Li (Dalian University of Technology, Liaoning, China)  
17:40 Perturbatively Regularized Neural Networks - Chase Owen Shimmin (Yale University (US))