Conveners
Results, Observables & Techniques
- Andreas Hinzmann (Deutsches Elektronen-Synchrotron (DE))
A measurement of novel event shapes quantifying the isotropy of collider events is presented, made using 140 fb$^{−1}$ of proton-proton collisions with $\sqrt{s}$=13 TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Energy-Mover's Distance between collider events and isotropic reference geometries, evaluated by...
As the performance of the Large Hadron Collider (LHC) continues to improve in terms of energy reach and instantaneously luminosity, ATLAS faces an increasingly challenging environment. High energy proton-proton ($pp$) interactions, known as hard scatters, are produced in contrast to low energy inelastic proton-proton collisions referred to as pile-up. From the perspective of data analyses,...
Jet formation algorithms that utilise eigenvalues of the similarity matrix offer a innovative take on the definition of a jet. This is referred to as spectral clustering. It solves the clustering problem in a non-greedy manner, and so may find more optimal solutions that straightforward agglomerative algorithms. However, the eigenvalue problem is computationally expensive, so in this study...
On average, during Run 2 of the Large Hadron Collider (LHC), 30-50 simultaneous vertices yielding charged and neutral showers, otherwise known as pileup, were recorded per event. This number is expected to only increase at the High Luminosity LHC with predicted values as high as 200. As such, pileup presents a salient problem that, if not checked, hinders the search for new physics as well as...
We present a model-agnostic search for new physics in the dijet final state using five different novel machine-learning techniques. Other than the requirement of a narrow dijet resonance, minimal additional assumptions are placed on the signal hypothesis. Signal regions are obtained utilizing multivariate machine learning methods to select jets with anomalous substructure. A collection of...
Full statistical models encapsulate the complete information of an experimental result, including the likelihood function given observed data. Their proper publication is of vital importance for a long lasting legacy of the LHC. Major steps have been taken towards this goal; a notable example being ATLAS release of statistical models with the pyhf framework. However, even the likelihoods are...