2–6 Oct 2023
Palacio de la Magdalena
Europe/Madrid timezone

A Bayesian analysis with Machine Learning of EFT Operators in Direct Dark Matter Detection

2 Oct 2023, 16:40
20m
Aula Santo Mouro (Palacio de la Magdalena)

Aula Santo Mouro

Palacio de la Magdalena

CPAN - Red Temática de Astropartículas (RENATA) CPAN - Red Temática de Astropartículas (RENATA)

Speaker

Dr Andres Daniel Perez (Instituto de Física Teórica UAM-CSIC)

Description

In this work we study the reach of future Direct Detection Dark Matter experiments within the framework of effective field theory (EFT) to describe the DM-nucleus scattering cross section. To extract as much information as possible, we perform a Bayesian analysis using Machine Learning techniques which allow us to assess the discovery potential of each parameter point in an easy and fast way. Although we use a XENON-like experiment as a benchmark, our analysis can be extended to other detectors since different data representations are tested and compared. We show the results in the Dark Matter mass, coupling-coefficient amplitude and phase space of the EFT operators.

Author

Dr Andres Daniel Perez (Instituto de Física Teórica UAM-CSIC)

Co-authors

David Cerdeño (Institute for Theoretical Physics (IFT-UAM/CSIC)) Dr Martín de los Rios (IFT/UAM)

Presentation materials