3–7 Jun 2024
IST, Lisboa
Europe/Lisbon timezone

How to rule out $(g-2)_\mu$ in $U(1)_{L_\mu-L_\tau}$ with White Dwarf Cooling

6 Jun 2024, 16:40
20m
Room QA1.2 - Chemistry Tower

Room QA1.2 - Chemistry Tower

Speaker

Patrick Foldenauer (Instituto de Física Teórica UAM/CSIC Madrid)

Description

In recent years, the gauge group $U(1)_{L_\mu-L_\tau}$ has received a lot of attention since it can, in principle, account for the observed excess in the anomalous muon magnetic moment $(g-2)_\mu$, as well as the Hubble tension. Due to unavoidable, loop-induced kinetic mixing with the SM photon and $Z$, the $U(1)_{L_\mu-L_\tau}$ gauge boson $A'$ can contribute to stellar cooling via decays into neutrinos.
In this work, we perform for the first time an ab initio computation of the neutrino emissivities of white dwarf stars due to plasmon decay in a model of gauged $U(1)_{L_\mu-L_\tau}$. Our central finding is that an observation of the early-stage white dwarf neutrino luminosity at the 30% level could exclude (or partially exclude) the remaining allowed parameter space for explaining $(g-2)_\mu$ . In this work, we present the relevant white dwarf sensitivities over the entire $A'$ mass range. In particular, we have performed a rigorous computation of the luminosities in the resonant regime, where the $A'$ mass is comparable to the white dwarf plasma frequencies.

Primary author

Patrick Foldenauer (Instituto de Física Teórica UAM/CSIC Madrid)

Presentation materials