10–14 Jun 2024
ETH Zurich- Hönggerberg Campus
Europe/Zurich timezone

Pair corrections to the no-pair Dirac–Coulomb(–Breit) energy of heliumlike systems

10 Jun 2024, 18:00
2h
ETH Zurich- Hönggerberg Campus

ETH Zurich- Hönggerberg Campus

Speaker

Ádám Nonn (ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary)

Description

The equal-time Bethe–Salpeter (Salpeter–Sucher) equation is the exact QED wave equation for a two-fermion system $[1, 2, 3, 13, 14]$. The equation containing only the instantaneous part of the interaction is the with-pair Dirac–Coulomb(–Breit) equation (wpDC(B)), which includes the double-pair correction to the no-pair DC(B) equation (npDC(B)). The numerical results for these equations can be converged within ppb to ppt relative precision using an explicitly correlated Gaussian (ECG) basis set approach $[4]–[12]$.
While the double-pair correction is a non-hermitian, but ‘algebraic’ term, which leaves the DC(B) equation linear in energy, the single-pair correction, represented by the irreducible crossed–Coulomb(–Breit) interaction kernel, appears within a complicated, energy dependent operator in the Salpeter–Sucher equation. The inclusion of the crossed–Coulomb(–Breit) and other higher-order irreducible interaction kernels through this term renders the wave equation non-linear in energy.
A novel perturbative approach is therefore being considered for the treatment of these contributions, using the npDC(B) and wpDC(B) results as high-precision relativistic reference energies and wave functions $[13, 14]$. The results of this new relativistic QED (rQED) approach, including the single-pair correction, are expected to serve as a useful comparison to the well established non-relativistic QED (nrQED) methodologies, and the highest precision experimental results.

References
$[1]$ E. E. Salpeter and H. A. Bethe, Phys. Rev. A 84, 1232 (1951).
$[2]$ E. E. Salpeter, Phys. Rev. A 87, 328 (1952).
$[3]$ J. Sucher, Ph. D. Thesis (1958), Columbia University.
$[4]$ P. Jeszenszki, D. Ferenc, E. Mátyus, J. Chem. Phys. 154, 224110 (2021).
$[5]$ P. Jeszenszki, D. Ferenc, E. Mátyus, J. Chem. Phys. 156, 084111 (2022).
$[6]$ D. Ferenc, P. Jeszenszki, E. Mátyus, J. Chem. Phys. 156, 084110 (2022).
$[7]$ D. Ferenc, P. Jeszenszki, E. Mátyus, J. Chem. Phys. 157, 094113 (2022).
$[8]$ P. Jeszenszki and E. Mátyus, J. Chem. Phys. 158, 054104 (2023).
$[9]$ D. Ferenc and E. Mátyus, Phys. Rev. A. 107, 052803 (2023).
$[10]$ P. Hollósy, P. Jeszenszki, E. Mátyus, under review (2024).
$[11]$ P. Jeszenszki and E. Mátyus, in preparation (2024).
$[12]$ Á. Nonn, Á. Margócsy, E. Mátyus, under review (2024).
$[13]$ E. Mátyus, D. Ferenc, P. Jeszenszki, Á. Margócsy, ACS Phys. Chem. Au 3, 222 (2023).
$[14]$ Á. Margócsy and E. Mátyus, arXiv:2312.13887 (2024)

Authors

Ádám Nonn (ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary) Péter Jeszenszki (ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary) Edit Mátyus (ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary)

Presentation materials

There are no materials yet.