The MicroBooNE detector, an 85-tonne active mass liquid argon time projection chamber (LArTPC) at Fermilab, is ideally suited to search for physics beyond the standard model due to its excellent calorimetric, spatial, and energy resolution. We will present several recent results using data recorded with Fermilab’s two neutrino beams: a first search for dark-trident scattering in a neutrino...
The Short-Baseline Near Detector (SBND) is one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently being commissioned and is expected to take neutrino data this year. SBND is characterized by superb imaging capabilities...
FASER, the ForwArd Search ExpeRiment, has successfully taken data at the LHC since the start of Run 3 in 2022. From its unique location along the beam collision axis 480 m from the ATLAS IP, FASER has set leading bounds on dark photon parameter space in the thermal target region and has world-leading sensitivity to many other models of long-lived particles. In this talk, we will give a full...
NA64 is a fixed target experiment at the CERN SPS searching for dark sectors employing high energy ($\sim$ 100 GeV) electron, positron and muon beams. In this talk, we report its latest results on sub-GeV Dark Matter searches with the 2016-2022 statistics (Phys. Rev. Lett. 131 (2023) no.16, 161801). With the new data, NA64 is starting to probe for the first time the very interesting region of...
This talk presents the results from the BaBar experiment on the search for dark matter candidates produced from $B$ mesons decays in $e^+e^−$ annihilations at 10.58 GeV .
We focus on two searches:
- The search for exotic B meson decays into a baryon and
a dark sector anti-baryon; $B^+ \rightarrow \psi_D + p$ and $B \rightarrow \psi_D + \Lambda$. These decays could simultaneously...
Rare kaon decays are among the most sensitive probes of both heavy and light new physics beyond the Standard Model description thanks to high precision of the Standard Model predictions, availability of very large datasets, and the relatively simple decay topologies. The NA62 experiment at CERN is a multi-purpose high-intensity kaon decay experiment, and carries out a broad rare-decay and...
The NA62 experiment at CERN took data in 2016–2018 with the main goal of measuring the $K^+ \rightarrow \pi^+ \nu \bar\nu$ decay.
In this talk we report on the search for visible decays of exotic mediators from data taken in "beam-dump" mode with the NA62 experiment. NA62 can be run as a "beam-dump" experiment by removing the kaon production target and moving the upstream collimators into a...
I will discuss our recent paper Phys.Lett.B 843 (2023) 138012 where we propose a minimal model where a dark sector, odd under a Z2 discrete symmetry, is the seed of lepton number violation in the neutrino sector at the loop level, in the context of the linear seesaw mechanism. We study the dark-matter phenomenology of the model, focusing on the case in which the stable particle is the lightest...
I will discuss our recent paper Phys.Rev.Lett. 132 (2024) 5, 051801, where we propose a generalized KSVZ-type axion framework in which coloured fermions and scalars act as two-loop Majorana neutrino-mass mediators. The global Peccei-Quinn symmetry under which exotic fermions are charged solves the strong CP problem. Within our general proposal, various setups can be distinguished by probing...
Scotogenic models are phenomenologically very interesting as they generate neutrino masses through the mediation of $Z_2$-odd particles (which can serve as dark matter candidate) in loops. We have analysed singlet-triplet scotogenic model in the connection of direct detection possibility of the fermionic dark matter. This model appears compelling as it shows some SUSY-like behaviour without...
Sterile neutrinos are well-motivated and simple dark matter (DM) candidates. However, sterile neutrino DM produced through oscillations by the Dodelson-Widrow mechanism is excluded by current X-ray observations and bounds from structure formation. One minimal extension, that preserves the attractive features of this scenario, is self-interactions among sterile neutrinos. In this work, we...
Heavy neutral leptons (HNL) are among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer -- but rather generic -- dark sector, their production rate can deviate dramatically from expectations associated to the standard-model weak interactions. In this...
We narrate dark matter, neutrino magnetic moment and mass in a Type-III radiative scenario. The Standard Model is enriched with three vector-like fermion triplets and two inert doublets to provide a suitable platform for the above phenomenological aspects. The inert scalars contribute to total relic density of dark matter in the Universe. Neutrino aspects are realized at one-loop with...
The BDF/SHiP experiment is a general purpose intensity-frontier experiment for the search of feebly interacting GeV-scale particles and to perform neutrino physics measurements at the HI-ECN3 (high-intensity) beam facility at the CERN SPS, operated in beam-dump mode, taking full advantage of the available 4x$10^{19}$ protons per year at 400 GeV. The CERN Research Board recently decided in...