Speaker
Description
The Deep Underground Neutrino Experiment currently under construction in the US will be a long-baseline neutrino oscillation experiment dedicated to determining the neutrino mass ordering and to measure the CP violation phase in the lepton sector. DUNE will also perform studies of non-beam physics such as atmospheric neutrinos, bursts from supernovae and nucleon decays in which photon detection systems will play a major role in triggering and also provide calorimetric measurements. For the second phase of DUNE, two additional detector modules will be added in the far detector complex in the Sanford Underground Research Facility. We present the Aluminum Profiles with Embedded X-ARAPUCA (APEX) concept as an advanced proposal for the photon detector system of the third DUNE far detector module. This system aims to have an optical coverage of approximately 60% made viable by the technology advancement achieved by the DUNE collaboration on the use of non-conductive optical fibers for power and signal readout of the photon detector units. Such large coverage will provide enhanced light collection capabilities at MeV-scale energy deposit level per interaction and optimal energy reconstruction resolution up to the GeV scale. The attained electrical isolation of the detector units with low noise levels allows for a complete instrumentation of the field cage walls with satisfactory segmentation as the readout scheme envisages a much larger than typical number of channels to be adopted. We discuss the main features of the system, first estimates on its expected performances, potential for physics measurements and prototyping plans for R&D.