Speaker
Ernesto Arganda
(IFLP-CONICET)
Description
The recent discovery of a SM-like Higgs boson at the LHC, with a mass around 125-126 GeV, together with the absence of results in the direct searches for supersymmetry, is pushing the SUSY scale ($m_\text{SUSY}$) into the multi-TeV range. This discouraging situation from a low-energy SUSY point of view has its counterpart in indirect SUSY observables which present a non-decoupling behavior with $m_\text{SUSY}$. This is the case of the one-loop lepton flavor violating Higgs decay rates induced by SUSY, which may remain constant or even increase as $m_\text{SUSY}$ grows, depending on the class of intergenerational mixing in the slepton sector which are taken into account ($LL$, $LR$, $RL$ or $RR$). In this work we focus on the LFV decays of the three neutral MSSM Higgs bosons $h$, $H$, $A \to \tau \mu$, considering the four types of slepton mixing ($\delta_{23}^{LL}$, $\delta_{23}^{LR}$, $\delta_{23}^{RL}$, $\delta_{23}^{RR}$), and show that all the three channels could be measurable at the LHC. The most promising predictions for the present and future LHC stages are also included.
Author
Ernesto Arganda
(IFLP-CONICET)
Co-authors
Mr
Miguel Arana-Catania
(Universidad Autonoma de Madrid)
Dr
maria herrero
(Universidad Autonoma de Madrid)