Speaker
Dr
Marc KNECHT
(CNRS - CPT Marseille)
Description
Isospin breaking in the $K_{\ell 4}$ form factors induced by the difference between charged and
neutral pion masses is discussed within a framework built on suitably subtracted dispersion representations. The $K_{\ell 4}$ form factors are constructed in an iterative way up to two loops in the low-energy expansion by implementing analyticity, crossing, and unitarity due to two-meson intermediate states. Analytical expressions for the phases of the two-loop form factors of the $K^\pm\to\pi^+\pi^- e^\pm \nu_e$ channel are presented, allowing one to connect the difference of form-factor phase shifts measured experimentally (out of the isospin limit) and the difference of $S$- and $P$-wave $\pi\pi$ phase shifts studied theoretically (in the isospin limit). The dependence with respect to the two $S$-wave scattering lengths $a_0^0$ and $a_0^2$ in the isospin limit is worked out in a general way, in contrast to previous analyses based on one-loop chiral perturbation theory. The results on the phases of the $K^\pm\to\pi^+\pi^- e^\pm \nu_e$ form factors obtained by the NA48/2 collaboration at the CERN SPS are reanalysed including isospin-breaking correction to extract values for the scattering lengths $a_0^0$ and $a_0^2$.
Author
Dr
Marc KNECHT
(CNRS - CPT Marseille)