19–30 Jan 2015
Ecole de Physique des Houches
Europe/Zurich timezone

Microwave near-field quantum logic techniques for a cryogenic surface-electrode trap

Not scheduled
20m
Ecole de Physique des Houches

Ecole de Physique des Houches

http://houches.ujf-grenoble.fr/

Speaker

Mr Sebastian Grondkowski (Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany)

Description

Surface-electrode traps, microwave-quantum-logic techniques, field-insensitive $^{9}$Be$^{+}$ qubit, reconfigurable rf voltages, microwave pulse-shaping, cryogenic ion trap

Summary

We describe the necessary control infrastructure for experiments with integrated microwave near-field surface-electrode ion traps at cryogenic temperatures with applications in quantum simulation and quantum logic. A trap geometry recently developed in our group [1] implements the coupling between the ions’ motional and internal state using only a single meander-shaped microwave-conductor. The realization of high-fidelity quantum-logic-operations requires a static bias magnetic field, microwave control fields for single-qubit rotations and sideband transitions, dc voltages for trapping fields and reconfigurable rf trapping potentials. We present the current status of the experiment at room temperature and give an outlook for a future setup at cryogenic temperatures.

Transistor amplifiers with preceding control stages on three rf trap electrodes are used to generate a reconfigurable rf trapping potential. In order to realize a field-independent $^{9}$Be$^{+}$ qubit at 22.3 mT, we have designed a set of water-cooled magnetic field coils. The microwave currents are generated in FPGA controlled DDS-modules and pass a frequency multiplier and pulse shaping stage. We use fast DAC-modules [2] from NIST to generate arbitrary waveforms for the pulse shaper and also for the dc voltages in the trap.

The distance between the trapped ions and the trap surface is in the order of 30 µm. As a result, anomalous heating of the ions’ motion may be considerable. In the cryogenic setup currently under construction, we expect these effects to be suppressed [3,4].

[1] M. Carsjens et al.: Appl. Phys. B 114, 243-250 (2014)

[2] R. Bowler et al.: Rev. Sci. Instr. 84, 033108 (2013)

[3] Deslauriers et al., Phys. Rev. Lett. 97, 103007 (2006)

[4] Labaziewicz et al., Phys. Rev. Lett. 100, 013001 (2008)

Primary author

Mr Sebastian Grondkowski (Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany)

Co-authors

Prof. Christian Ospelkaus (Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany and Physikalisch-Technische-Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany) Dr Christina Vollmer (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany) Mr Henning Hahn (Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany) Mrs Martina Wahnschaffe (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38166 Braunschweig, Germany) Dr Matthias Kohnen (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany) Mr Timko Dubielzig (Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany)

Presentation materials

There are no materials yet.