Speaker
Mr
Pedro Assis
(LIP)
Description
The Pierre Auger Observatory operates a hybrid detector composed of a Fluorescence Detector and a Surface Detector array. Water-Cherenkov detectors are the building blocks of the array and as such play a key role in the detection of secondary particles at the ground. A good knowledge of the detector response is paramount to lower systematic uncertainties and thus to increase the capability of the experiment in determining the muon content of the extensive air showers with a higher precision. In this work we report on a detailed study of the detector response to single muon traversals as a function of traversal geometry. A dedicated Resistive Plate Chambers (RPC) hodoscope was built and installed around one of the detectors. The hodoscope is formed by two stand-alone low gas flux segmented RPC detectors with the test water-Cherenkov detector placed in between. The segmentation of the RPC detectors is of the order of 10 cm. The hodoscope is used to trigger and select single muon events in different geometries. The signal recorded in the water-Cherenkov detector and performance estimators were studied as a function of the trajectories of the muons and compared with a dedicated simulation.
Registration number following "ICRC2015-I/" | 584 |
---|---|
Collaboration | Pierre Auger |
Author
Mr
Pedro Assis
(LIP)