Speaker
Stephanie Wissel
(UCLA)
Description
The PeV neutrinos discovered by IceCube are of astrophysical origin, and their progenitors could be any of several source classes, including active galactic nuclei, gamma-ray bursts, or pulsars. Such high-energy accelerators would produce neutrinos up to hundreds of PeV, which motivates the development of neutrino telescopes with the sensitivity, energy resolution, and pointing resolution required to distinguish among models of the IceCube neutrinos as well as cosmogenic neutrinos. Radio detection of Askaryan radiation from neutrino showers in ice is well-suited to the detection of the highest energy neutrinos, with degree-scale pointing resolution and the ability to build sparse arrays, but the energy threshold of current experiments is currently set by the temperature of the ice. The uncorrelated thermal noise can be averaged away by combining the signals from several antennas in a phased array. We report here on a June 2015 trip to Summit Station in Greenland for testing a phased array of dipoles, including the sensitivity of the array and background measurements of the site. We also discuss prospects for the Greenland Neutrino Observatory.
Registration number following "ICRC2015-I/" | 715 |
---|---|
Collaboration | -- not specified -- |
Author
Stephanie Wissel
(UCLA)
Co-authors
Abigail Vieregg
(UCLA)
Andrew Romero-Wolf
(Jet Propulsion Laboratory, California Institute of Techology)
Christian Miki
(University of Hawaii)
David Saltzberg
(Univ. of California Los Angeles (US))
Gary Varner
(University of Hawaii)
Keith Bechtol
Prof.
Peter Gorham
(University of Hawaii)
Ryan Nichol
(UCL)