Due to technical problems on the CERN SSO system, logging in is currently failing for many users. Details on the SSB
July 29, 2015 to August 6, 2015
World Forum
Europe/Amsterdam timezone

Development of TRBs for Silicon Tracker Detector of DAMPE satellite

Jul 30, 2015, 3:30 PM
Amazon Foyer Terrace (World Forum)

Amazon Foyer Terrace

World Forum

Churchillplein 10 2517 JW Den Haag The Netherlands
Board: 256
Poster contribution DM-IN Poster 1 DM and NU


zhang fei (IHEP)


The Silicon Tungsten Tracker (STK) is a detector of the DAMPE satellite to measure the incidence direction of high energy cosmic ray. It consists of 6 layers of silicon micro-strip detectors interleaved with Tungsten converter plates. The entire STK contains 73,728 readout channels totally and can be read out according to external average 50 Hz trig. It’s a great challenge for space mission that all data acquisition (DAQ) works of detector signal digitization, data process and transfer are finished in 3 milliseconds dead time. In order to meet above requirements, 8 identical Tracker Readout Boards (TRB) are developed to control and read the front Application Specific Integrated Circuits (ASIC) signals. 8 TRBs work simultaneously according to every trig. In each TRB, there are 2 Field Programmable Gate Arrays (FPGA), 48 serial ADCs to process front 144 ASICs. A SRAM is also adopted in each TRB for data buffer. LVDS and RS422 are used for scientific data and telemetry communication with payload DAQ. Benefiting from the FPGA’s rich resources and feature of work in parallel, data process includes pedestal subtraction, common noise subtraction, cluster finding and data compressing is realized inside two FPGAs. The TRB readout electronics of hardware and software for STK will be introduced in this poster.
Registration number following "ICRC2015-I/" 786

Primary author


Mr Di Wu (IHEP) Mr Ke Gong (IHEP) Dr Rui Qiao (IHEP) Wenxi Peng (IHEP) Xin Wu (Universite de Geneve (CH)) giovanni.ambrosi@pg.infn.it Dr yifan Dong (IHEP)

Presentation materials

There are no materials yet.